|
[1] A. van der Ziel, “Thermal Noise in Field Effect Transistors”, IEEE Proc. pp. 1801-1812, August 1962. [2] D. K. Shaffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, June 1997. [3] B. Razavi, “RF Microelectronics,” Prentice-Hall, Inc., 1998. [4] D. Barras, F. Ellinger, H. Jackel, and W. Hirt, “A low supply voltage SiGe LNA for Ultra-Wideband frontends,” IEEE Microwave And Wireless Components Lett., vol. 14, no. 10, pp. 469-471, Oct. 2004. [5] Freescale Semiconductor “Ultra-Wideband Opportunities Under the New FCC Waiver,” Rev1 March / 2005. [6] B. Razavi et al, “A 0.13-um CMOS UWB Transceiver,” ISSCC Dig. Tech. Papers, pp. 216-217, Feb. 2005. [7] Welborn, XtremeSpectrum, Inc. “Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs),” 2003. [8] “First report and order in the matter of revision of Part 15 of the commission’s rules regarding Ultra-Wideband transmission systems,” FCC, released, ET Docket 98-153, FCC 02-48, Apr. 22, 2002 [9] Bo Shi and Michael ,Yan Wah Chia, “Design of A SiGe Low Noise Amplifier for 3.1-10.6 GHz Ultra-Wideband Radio” Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, Volume: 1, 23-26 May 2004 [10] Sun, B.; Fei Yuan; Opal, A.;.” Inductive peaking in wideband CMOS current amplifiers”, Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, Volume: 4, 23-26 May 2004 Pages:IV - 285-8 Vol.4 [11] J. Lee and J.D. Cressler, ”A 3-10GHz SiGe resistive feedback low noise amplifier for UWB applications,” in IEEE RFIC Symp. Dig., 2005, pp. 545-548. [12] J. Lee and J.D. Cressler, ” Analysis and Design of an Ultra-Wideband Low-Noise Amplifier Using Resistive Feedback in SiGe HBT Technology,” in IEEE Transactions on Microwave Theory and Techniques. Vol.54, Issue 3, March 2006, pp.1262 – 1268. [13] Ming-Chou Chiang et. al., ” Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops,” in IEEE J. Solid-State Circuits, Vol.37, Issue 6, June 2002 pp.694 – 701 [14] Y. T. Lin and S. S. Lu, “A 2.4/3.5/4.9/5.2/5.7-GHz Concurrent Multiband Low Noise Amplifier Using InGaP/GaAs HBT Technology,” IEEE Microwave and Wireless Components Letters, Vol. 14, no. 10, pp. 463-465, Oct. 2004. [15] H. Hashemi and A. Hajimiri, “Concurrent dual-band CMOS low noise amplifiers and receiver architectures,” in VLSI Circuits Symp. Dig., June 2001, pp. 247-250. [16] WESTERWICK, E.H., : ‘A 5 GHz band CMOS low noise amplifier with a 2.5 dB noise figure’, in 2001 IEEE VLSI-TSA Int. Symp. pp. 224-227, 2001. [17] FUJIMOTO, R., KOJIMA, K. and OTAKA, S., ‘A 7-GHz 1.8-dB NF CMOS low-noise amplifier’ IEEE J. Solid-State Circuits, Vol. 37, no. 7, pp. 852-856, Jul. 2002. [18] YU, K.W., LU, Y.L., CHANG, D.C., LIANG, V., and CHANG, M.F., ‘K-band low-noise amplifiers using 0.18 mm CMOS technology, IEEE Microwave and Wireless Components Letters, Vol. 14, no. 3, pp. 106-108, Mar. 2004. [19] SIA, C.B., ONG, B.H., YEO, K.S., MA, J.G., and DO, M.A., ‘Accurate and Scablable RF Interconnect Model for Silicon-Based RFIC Applications’, IEEE Trans. Microwave Theory and Techniques, Vol. 53, no. 9, pp. 3035-3044, Sep. 2005. [20] CHIU, H.W., LU, S.S., and LIN, Y.S., ‘A 2.17-Db NF-5-GHz-Band Monolithic CMOS LNA with 10-mW DC Power Consumption’, IEEE Trans. Microwave Theory and Techniques, Vol. 53, no. 3, pp. 813-824, Mar. 2005. [21] J. N. Burghartz, D. C. Edelstein, K. A. Jenkins and Y. H. Kwark, “Spiral Inductors and Transmission Lines in Silicon Technology Using Copper-Damascene Interconnects and Low-Loss Substrates,” IEEE T. Microwave Theory and Techniques, vol. 45, no. 10, pp. 1961-1968, Oct. 1997. [22] J. Y.-C Chang, A. A. Abidi, and M. Gaitan, “Large Suspended Inductors on Silicon and Their Use in a 2 m CMOS RF Amplifier,” IEEE Electron Device Letters, vol. 14, no. 5, pp. 246-248, May 1993. [23] Y. H. Xie, M. R. Frei, A. J. Becker, C. A. King, D. Kossives, L. T. Gomez, and S. K. Theiss, “An Approach for Fabricating High-Performance Inductors on Low-Resistivity Substrates,” IEEE J. Solid-State Circuits, vol. 33, pp. 1433-1438, Sept. 1998. [24] C. Y. Lee, T. S. Chen, C. H. Kao, J. D. S. Deng, C. C. Yen, Y. K. Lee, J. C. Kuo, J. F. Chang, G. W. Huang, K. M. Chen, and T. S. Duh, “A Simple Systematic Procedure of Si-Based Spiral Inductor Design,” IEEE Proc. RFIC conference, pp. 619-622, June 2004. [25] C. P. Yue, and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998. [26] A. Wagemans, P. Baltus, R. Dekker, A. Hoogstraate, H. Maas, A. Tombeur, and J. Sinderen, “A 3.5 mW 2.5 GHz Diversity Receiver and a 1.2 mW 3.6 GHz VCO in Silicon-on-Anything,” ISSCC Dig. of Tech. Papers, Feb. 1998.
|