跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴淑惠
研究生(外文):Shu-Hui Yen
論文名稱:3.1-10.6GHz矽鍺超寬頻低雜訊放大器與ka頻段低雜訊放大器之研究
論文名稱(外文):Study of 3.1-10.6GHz UWB SiGe LNA and Ka-Band CMOS LNA
指導教授:林佑昇林佑昇引用關係
指導教授(外文):Yo-Sheng Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:94
中文關鍵詞:低雜訊放大器超寬頻低雜訊放大器Ka-band低雜訊放大器達靈頓對電感補償電阻負回授
外文關鍵詞:low noise amplifierultra widebandKa-band low noise amplifierDarlington pairinductive peakingresistors negative feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:0
本論文以超寬頻(Ultra-wideband)低雜訊放大器和ka頻段低雜訊放大器為研究目標,研究主題分成兩部分:
第一部份為應用於接收端超寬頻系統之3.1~10.6 GHz低雜訊放大器。主要設計了兩種類型之低雜訊放大器,皆利用電阻負回授技巧,並配合Inductive peaking技術來增加主極點頻率,進而擴展3 dB頻寬。
一種為使用二級共射放大器,其中第二級是由達靈頓對所組成,利用達靈頓的兩倍截止頻率特性達到高電流增益,並配合多組電阻負回授達成頻寬擴展;在此以TSMC35 SiGe BiCMOS完成了三組低雜訊放大器依序分別為多個電感配合多組電阻負回授方式、使用全電阻方式和僅使用一顆電感配合多組電阻負回授方式。實驗結果顯示:第一組放大器,3 dB頻寬可達17 GHz,在頻段3.1~10.6 GHz,S21皆維持8±0.5 dB的增益,輸入、輸出反回損耗皆小於-9 dB,以及最低雜訊指數為3.6 dB,此電路消耗之功率為21 mW。第二組放大器在3.1~10.6 GHz頻率下有著最高增益S21為16.2 dB,輸入反回損耗低於-12 dB,輸出反回損耗低於-18 dB,以及雜訊指數為3.8~6.2 dB,此電路消耗之功率為40.7 mW。第三組放大器在3.1~10.6 GHz頻率下有著最高增益S21為12.16 dB,輸入反回損耗低於-6.36 dB,輸出反回損耗低於-13.9 dB,以及雜訊指數為3.5~5.6 dB,此電路消耗之功率為19.2 mW。
另一種電路為僅採用兩級Cascade common-source的架構,在每一級使用local feedback電阻回授方式來達成,並於第二級之輸入端加入一個電感,做為peaking的功用。在此分別使用TSMC18 CMOS和TSMC35 SiGe BiCMOS來實現。在使用TSMC18 CMOS所完成的2-7 GHz LNA中,輸入反回損耗為-10.4 ~ -15.3 dB,輸出反回損耗為-19.4 ~ -10.3 dB,增益S21為9 ~ 8 dB,以及雜訊指數為4.86 ~ 4.47 dB,此電路僅消耗15.6 mW功率。另一個使用TSMC35 SiGe BiCMOS所完成的3.1-10.6 GHz LNA,其量測結果:輸入反回損耗為-14.8 ~ -31.7 dB,輸出反回損耗為-24.9 ~ -13.2 dB,增益S21為7.6 ~ 6 dB以及雜訊指數為3.9 ~ 5.8 dB,此電路消耗功率為23.25 mW。
第二部份為設計一適用於Ka頻段和毫米波之低雜訊放大器。我使用三級cascaded common-source架構以TSMC CMOS 0.18 m和JAZZ SiGe 0.18 m分別實現了32 GHz 、60 GHz的低雜訊放大器。在32 GHz的低雜訊放大器中,實驗結果顯示:在31.5 GHz頻率下有著最高增益S21為10.35 dB,在頻率31.5 GHz有著最小輸入反回損耗-15.7 dB,在頻率33 GHz有著輸出反回損耗低於-16.1 dB,此外電路消耗之功率為27 mW。而在60 GHz的低雜訊放大器,僅完成模擬,並委託國外進行佈局、下線。


關鍵詞:低雜訊放大器、超寬頻低雜訊放大器、Ka-band低雜訊放大器、達靈頓對、電感補償、電阻負回授
This thesis aim is to design an ultra wideband low noise amplifier and Ka-band low noise amplifier. Study the theme be divided into two parts:
In first part, 3.1 ~ 10.6 GHz low noise amplifier is designed for ultra wideband (UWB). The mainly two types of low noise amplifier were added multiple feedback loops and inductive peaking technique to enhance the frequency of the dominant pole and then expand 3 dB bandwidth of the LNA.
One is using two-stage common emitter whose the second stage is Darlington pair consisting. We employ the double cut-off frequency characteristic of Darlington pair to achieve high current gain and added multiple negative feedback resistors to expand bandwidth. The three types of low noise amplifier are implemented in 0.35 m SiGe BiCMOS, these are multiple inductors with multiple resistors negative feedback, inductorless and only one inductor with multiple resistors negative feedback, respectively. The first type of the amplifier, measured results show that the 3dB bandwidth is 17 GHz, the power gain (S21) of 8 dB, input return loss (S11) and output return loss (S22) below -9 dB and minimum noise figure of 3.6 dB over 3.1-10.6 GHz while consuming 21 mW. The second type of the amplifier measured results show the power gain (S21) of 16.2 dB, input return loss (S11) below -12 dB, output return loss (S22) below -18 dB and noise figure of 3.8 ~ 6.2 dB form 3.1 to 10.6 GHz. The total power consumption is 40.7 mW. The third type of the amplifier, measured results show the maximum power gain (S21) of 12.16 dB. The input return loss (S11) is less than -6.36 dB, output return loss (S22) below -13.9 dB and minimum noise figure of 3.5 ~ 5.6 dB over 3.1-10.6 GHz while consuming 19.2 mW.
The other is Cascade common-source structure. We used local resistor feedback and added peaking inductor on gate (base) of second stage to increase 3 dB bandwidth. The circuit is fabricated in standard 0.18 m CMOS process and 0.35 m SiGe BiCMOS technology, respectively. In standard 0.18 m CMOS process LNA, the measured results are S11 of -10.4 ~ -15.3 dB, S22 of -19.4 ~ -10.3 dB, S21 of 9 ~ 8 dB, and NF of 4.86 ~ 4.47 dB from 2 to 7 GHz. The total power consumption is only 15.6 mW at +1.5 V supply voltage. The other using 0.35 m SiGe BiCMOS technology, the measured results are S11 of -14.8 ~ -31.7 dB, S22 of -24.9 ~ -13.2 dB, S21 of 7.6 ~ 6 dB and NF of 3.9 ~ 5.8 dB from 3.1 to 10.6 GHz. The total power consumption is 23.25 mW at +2.7v and +1.5v supply voltage.
The last part, we design Ka-band and millimeter-wave low noise amplifier. The three stage cascaded common-source structure is implemented in standard 0.18 m CMOS technology and JAZZ 0.18 m SiGe BiCMOS technology to achieve 32 GHz and 60 GHz, respectively. The measured results of the Ka-band show the highest power gain (S21) is 10.35 dB at 31.5 GHz, minimum input return loss (S11) of -15.7 dB at 31.5 GHz and minimum output return loss (S22) of -16.1 dB at 33 GHz. The total power consumption is only 27 mW. In addition, the 60 GHz LNA also are designed and the only results of simulation are presented.

Keywords: low noise amplifier, ultra wideband, Ka-band low noise amplifier, Darlington pair, inductive peaking, resistors negative feedback
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 2

Chapter 2 RF Fundamentals and Ultra-Wideband System
Overview 4
2.1 RF Fundamentals 4
2.1.1 S-Parameters 4
2.1.2 Noise in Transistors 6
2.1.3 Noise Figure 9
2.1.4 Intermodulation 11
2.1.5 Gain Compression 14
2.1.6 Sensitivity and Dynamic Range 15
2.2 A brief introduction of UWB 16

Chapter 3 A 3.1 to 10.6 GHz Ultra-Wideband LNA Using
Darlington Pair 20
3.1 Principle of the circuit design 21
3.2 Input Matching Principle 22
3.3 UWB Gain Flatness Technique 23
3.4 Chip Implementation and Measurement Result 25
3.5 Improved UWB LNA 30
3.6 Simulation and Measurement Results 33
3.7 Conclusions 41

Chapter 4 Cascaded Two-Stage Amplifier with a Peaking
Inductor for UWB System 42
4.1 Principle of the circuit design 42
4.2 Input Matching Principle 44
4.3 UWB Gain Flatness Technique 44
4.4 Simulation and Measurement Results 46
4.5 Similar amplifier using SiGe BiCMOS Technology 51
4.6 Simulation and Measurement Results 52
4.7 Conclusions 57

Chapter 5 A Ka-Band Low Noise Amplifier Using Standard
0.18 mm CMOS Technology 58
5.1 Principle of the circuit design 59
5.2 Simulation and Measurement Results 62
5.3 An Analysis of Silicon Substrate Effects in 60GHz LNA 66
5.4 Simulation Results of 60GHz 70
5.5 Conclusions 74

Chapter 6 Conclusions 75
References 77
Publication List 80
Appendix 81
[1] A. van der Ziel, “Thermal Noise in Field Effect Transistors”, IEEE Proc. pp. 1801-1812, August 1962.
[2] D. K. Shaffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, June 1997.
[3] B. Razavi, “RF Microelectronics,” Prentice-Hall, Inc., 1998.
[4] D. Barras, F. Ellinger, H. Jackel, and W. Hirt, “A low supply voltage SiGe LNA for Ultra-Wideband frontends,” IEEE Microwave And Wireless Components Lett., vol. 14, no. 10, pp. 469-471, Oct. 2004.
[5] Freescale Semiconductor “Ultra-Wideband Opportunities Under the New FCC Waiver,” Rev1 March / 2005.
[6] B. Razavi et al, “A 0.13-um CMOS UWB Transceiver,” ISSCC Dig. Tech. Papers, pp. 216-217, Feb. 2005.
[7] Welborn, XtremeSpectrum, Inc. “Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs),” 2003.
[8] “First report and order in the matter of revision of Part 15 of the commission’s rules regarding Ultra-Wideband transmission systems,” FCC, released, ET Docket 98-153, FCC 02-48, Apr. 22, 2002
[9] Bo Shi and Michael ,Yan Wah Chia, “Design of A SiGe Low Noise Amplifier for 3.1-10.6 GHz Ultra-Wideband Radio” Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, Volume: 1, 23-26 May 2004
[10] Sun, B.; Fei Yuan; Opal, A.;.” Inductive peaking in wideband CMOS current amplifiers”, Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, Volume: 4, 23-26 May 2004 Pages:IV - 285-8 Vol.4
[11] J. Lee and J.D. Cressler, ”A 3-10GHz SiGe resistive feedback low noise amplifier for UWB applications,” in IEEE RFIC Symp. Dig., 2005, pp. 545-548.
[12] J. Lee and J.D. Cressler, ” Analysis and Design of an Ultra-Wideband Low-Noise Amplifier Using Resistive Feedback in SiGe HBT Technology,” in IEEE Transactions on Microwave Theory and Techniques. Vol.54, Issue 3, March 2006, pp.1262 – 1268.
[13] Ming-Chou Chiang et. al., ” Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops,” in IEEE J. Solid-State Circuits, Vol.37, Issue 6, June 2002 pp.694 – 701
[14] Y. T. Lin and S. S. Lu, “A 2.4/3.5/4.9/5.2/5.7-GHz Concurrent Multiband Low Noise Amplifier Using InGaP/GaAs HBT Technology,” IEEE Microwave and Wireless Components Letters, Vol. 14, no. 10, pp. 463-465, Oct. 2004.
[15] H. Hashemi and A. Hajimiri, “Concurrent dual-band CMOS low noise amplifiers and receiver architectures,” in VLSI Circuits Symp. Dig., June 2001, pp. 247-250.
[16] WESTERWICK, E.H., : ‘A 5 GHz band CMOS low noise amplifier with a 2.5 dB noise figure’, in 2001 IEEE VLSI-TSA Int. Symp. pp. 224-227, 2001.
[17] FUJIMOTO, R., KOJIMA, K. and OTAKA, S., ‘A 7-GHz 1.8-dB NF CMOS low-noise amplifier’ IEEE J. Solid-State Circuits, Vol. 37, no. 7, pp. 852-856, Jul. 2002.
[18] YU, K.W., LU, Y.L., CHANG, D.C., LIANG, V., and CHANG, M.F., ‘K-band low-noise amplifiers using 0.18 mm CMOS technology, IEEE Microwave and Wireless Components Letters, Vol. 14, no. 3, pp. 106-108, Mar. 2004.
[19] SIA, C.B., ONG, B.H., YEO, K.S., MA, J.G., and DO, M.A., ‘Accurate and Scablable RF Interconnect Model for Silicon-Based RFIC Applications’, IEEE Trans. Microwave Theory and Techniques, Vol. 53, no. 9, pp. 3035-3044, Sep. 2005.
[20] CHIU, H.W., LU, S.S., and LIN, Y.S., ‘A 2.17-Db NF-5-GHz-Band Monolithic CMOS LNA with 10-mW DC Power Consumption’, IEEE Trans. Microwave Theory and Techniques, Vol. 53, no. 3, pp. 813-824, Mar. 2005.
[21] J. N. Burghartz, D. C. Edelstein, K. A. Jenkins and Y. H. Kwark, “Spiral Inductors and Transmission Lines in Silicon Technology Using Copper-Damascene Interconnects and Low-Loss Substrates,” IEEE T. Microwave Theory and Techniques, vol. 45, no. 10, pp. 1961-1968, Oct. 1997.
[22] J. Y.-C Chang, A. A. Abidi, and M. Gaitan, “Large Suspended Inductors on Silicon and Their Use in a 2 m CMOS RF Amplifier,” IEEE Electron Device Letters, vol. 14, no. 5, pp. 246-248, May 1993.
[23] Y. H. Xie, M. R. Frei, A. J. Becker, C. A. King, D. Kossives, L. T. Gomez, and S. K. Theiss, “An Approach for Fabricating High-Performance Inductors on Low-Resistivity Substrates,” IEEE J. Solid-State Circuits, vol. 33, pp. 1433-1438, Sept. 1998.
[24] C. Y. Lee, T. S. Chen, C. H. Kao, J. D. S. Deng, C. C. Yen, Y. K. Lee, J. C. Kuo, J. F. Chang, G. W. Huang, K. M. Chen, and T. S. Duh, “A Simple Systematic Procedure of Si-Based Spiral Inductor Design,” IEEE Proc. RFIC conference, pp. 619-622, June 2004.
[25] C. P. Yue, and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
[26] A. Wagemans, P. Baltus, R. Dekker, A. Hoogstraate, H. Maas, A. Tombeur, and J. Sinderen, “A 3.5 mW 2.5 GHz Diversity Receiver and a 1.2 mW 3.6 GHz VCO in Silicon-on-Anything,” ISSCC Dig. of Tech. Papers, Feb. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於超寬頻系統之電流再利用低雜訊放大器、9-26GHz寬頻互補式電晶體低雜訊放大器之設計與研究
2. 具抑制頻寬外增益功能之帶斥特性超寬頻低雜訊放大器與2.5-11GHz主動式寬頻匹配超寬頻低雜訊放大器
3. 無線區域網路之CMOS鏡像拒斥低雜訊放大器、超寬頻系統之電流再利用低雜訊放大器、超寬頻系統之低功率高線性度無電感混頻器之設計與研究
4. 15-28 GHz CMOS寬頻低雜訊放大器及60-GHz非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器/IQ混頻器電路之研製
5. 應用於IEEE802.11a/b/g之雙頻帶低雜訊放大器和偶次諧波降頻混頻器以及使用0.18umCMOS製作之Ka頻低雜訊放大器和K頻壓控震盪器
6. 超寬頻低雜訊放大器、射頻電感器及變壓器之設計與實作
7. 0.18μm製程之nMOSFETs特性描述與建立模型並應用在3到5GHz超寬頻低雜訊放大器
8. 設計和實現5GHz低功率變壓器回授低雜訊放大器和壓控振盪器
9. CMOS 60 GHz寬頻低雜訊放大器及24 GHz低雜訊放大器使用蜂巢型電感之設計
10. 3~5GHz寬頻低雜訊放大器、低電壓混波器及5GHz頻段倍頻器之設計與實現
11. 應用於無線通訊系統之低功耗低雜訊放大器設計
12. 應用於60-GHz射頻積體電路之電感器與變壓器之研究
13. 3.1-10.6GHzCMOS超寬頻低雜訊放大器之設計及實現
14. 5GHz之寬可調範圍壓控振盪器與淺溝渠隔離技術之可變電容的設計與實現
15. 應用於0.5~10GHz雜訊消除技術與電流重複利用架構之超寬頻低雜訊放大器