[1] L. Machet and A. Boucaud, “Phonophoresis: efficiency, mechanisms and skin tolerance,” International journal of pharmaceutics, pp.1-15, 2002.
[2] A. Boucaud, “Transdermal drug delivery of insulin using low-frequency ultrasound,”Pharmaceutical Research, Vol.13, No. 3, pp.1453-1456, 1996.
[3] A. Boucaud, et al., “A practical use of low frequency ultrasound for rapid and reproducible transdermal delivery of insulin,” IEEE Ultrasonics Symposium, vol.2, pp.1327 –1330, 2001.
[4] D. Monti, “Comparison of the ultrasound and chemical enhancers on transdermal permeation of caffeine and morphine through hairless mouse skin in votro,”International journal of pharmaceutics, pp.131-137, July 2001.
[5] Cochelin, “In vitro phonophoresis of mannitol, oestradial and hydrocortisone across human and hairless skin,”International Journal of Pharmaceutics, pp.169-174, October 1998.
[6] V. Zderic, “Ocular drug delivery using 20-kHz ultrasound,”Ultrasound in Med. & Biology, Vol. 28, pp.823-829, 2002.
[7] S. Mitragotri, D. Blankschtein and R. Langer, “Transdermal drug delivery using low-frequency sonophoresis, ” Pharmaceutical Research, Vol.13, No. 3, pp.411-420, 1996.
[8] Machet, et al., “In vitro phonophoresis of digoxin across hairless mice and human skin;thermal effect of ultrasound,”International Journal of Pharmaceutics, pp.39-45, 1996.
[9] 王紹榮,“兩種互補式金氧半數位類比轉換器積體化設計及應用之研究,” 暨南國際大學電機工程研究所,碩士論文, June 2005[10] 賴育瑄,“高增益積體電路驅動放大器設計及應用之研究,”暨南國際大學電機工程研究所,碩士論文, June 2004[11] P.R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits”
[12] Gunhee Han and Edgar Sanchez-Sinencio, “CMOS Transconductance Multipliers: A Tutorial,” IEEE Transaction on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 45, No. 12, December 1998
[13] B. Gilbert, “A precision four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 353–365, Dec.1968.
[14] “A high-performance monolithic multiplier using active feedback,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 364–373, Dec. 1974.
[15] J. N. Babanezhad and G. C. Temes, “A 20-V four-quadrant CMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 1158–1168,Dec. 1985.
[16] D. C. Soo and R. G. Meyer, “A four-quadrant NMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1174–1178, Dec. 1982.
[17] S. L. Wong, N. Kalyanasundaram, and C. A. T. Salama, “Wide dynamic range four-quadrant CMOS analog multiplier using linearized transconductance stage,” IEEE J. Solid-State Circuits, vol. SC-21, pp.1120–1122, Dec. 1986.
[18] R. Tawel, R. Benson, and A. P. Thakoor, “A CMOS UV-programmable nonvolatile synaptic array,” in Proc. IEEE Int. Joint Conf. Neural Networks, Seattle, vol. 1, pp. 581–585, July 1991.
[19] J. Ram´ırez and S. Ming-Shen, “The folded Gilbert cell: A low voltage high performance CMOS multiplier,” in Proc. IEEE Midwest Symp. Circuits and Syst., pp. 20–23, Aug. 1992.
[20] S. C. Qin and R. L. Geiger, “A _5 V CMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 1143–1146, Dec. 1987.
[21] Bang-Sup Song, “CMOS RF Circuits for Data Communications Applications,” IEEE Journal of Solid-State Circuits, Vol. SC-21, No. 2, April 1986.
[22] R. Jacob Baker, Harry W. Li, David E. Boyce, “CMOS Circuit Design, Layout, and Simulation”
[23] David A. Johns, Ken Martin, “Analog Integrated Circuit Design” John Wiley& Sons, New York,1997.
[24] Phillip E. Allen, Douglas R. Holberg, “CMOS Analog Circiut Design,” Oxford, New York, 2002.
[25] Sedra/Smith, “Microelectronic Circuits”
[26] Behzad Razavi, ”Design of Analog CMOS Integrated Circuits,” McGraw-Hill, New York,2001.