跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉銘
研究生(外文):Wei-Ming Huang
論文名稱:多功能波形產生器之積體電路設計
論文名稱(外文):The Integrated Circuit Design of Multi-Function Waveform Generator
指導教授:孫台平
指導教授(外文):Tai-Ping Sun
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:70
中文關鍵詞:乘法器電壓控制振盪器積分器濾波器兩級運算放大器
外文關鍵詞:multipliervoltage control oscillatorintegratorfiltertwo-stage operational amplifier
相關次數:
  • 被引用被引用:1
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:1
本論文之主要目的係設計一多功能波形產生器,應用於低頻超音波治療及藥物導入之超音波驅動系統,此晶片經由TSMC 0.35μm 2P4M製程技術下線完成,晶片面積為250μm X 150μm,操作電壓範圍為0~3.3V,經由量測結果可得知當輸入訊號一端為250KHz,另一端為5MHz時,晶片仍能工作。
本論文討論之電路包含有乘法器、電壓控制振盪器、積分器與濾波器等,詳細之工作原理將於論文中作探討,論文之最後為結論與展望,期能完成低功率與低電壓各類系統之應用,達至人機一體之理想。
The major objective of this thesis is to design a multi-function waveform generator for low frequency ultrasonic system application. The 250μm X 150μm chip size of multiplier has been fabricated using TSMC 0.35μm 2P4M process technology. The operation voltage of this chip is 0V~3.3V. The results of measurement show that the chip can work when input signals are 250KHz and 5MHz, espectively.
The multiplier, voltage control oscillator, integrator and filter are discussed in this thesis. The work principle of design will be detailed in this thesis. Finally, the conclusion and future work of the multi-function waveform generator will be used in the low voltage and low power system application.
論文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄

第一章 緒論 1
1.1 研究背景 1
1.2 研究動機及目的 2
1.3 論文架構及設計流程 4

第二章 乘法器之電路設計 6
2.1 簡介與應用 6
2.2 乘法器之模型 9
2.3 四象限乘法器 15

第三章 訊號波形產生電路 30
3.1 簡介與應用 30
3.2 方波訊號產生電路之設計 31
3.3 三角波訊號產生電路之設計 38
3.4 弦波訊號產生電路之設計 43
3.5 雙級運算放大器之設計 47

第四章 乘法器之測試結果與討論 54
4.1 乘法器之測試 54
4.2 量測結果與討論 58

第五章 結論與展望 67

參考文獻 68
[1] L. Machet and A. Boucaud, “Phonophoresis: efficiency, mechanisms and skin tolerance,” International journal of pharmaceutics, pp.1-15, 2002.
[2] A. Boucaud, “Transdermal drug delivery of insulin using low-frequency ultrasound,”Pharmaceutical Research, Vol.13, No. 3, pp.1453-1456, 1996.
[3] A. Boucaud, et al., “A practical use of low frequency ultrasound for rapid and reproducible transdermal delivery of insulin,” IEEE Ultrasonics Symposium, vol.2, pp.1327 –1330, 2001.
[4] D. Monti, “Comparison of the ultrasound and chemical enhancers on transdermal permeation of caffeine and morphine through hairless mouse skin in votro,”International journal of pharmaceutics, pp.131-137, July 2001.
[5] Cochelin, “In vitro phonophoresis of mannitol, oestradial and hydrocortisone across human and hairless skin,”International Journal of Pharmaceutics, pp.169-174, October 1998.
[6] V. Zderic, “Ocular drug delivery using 20-kHz ultrasound,”Ultrasound in Med. & Biology, Vol. 28, pp.823-829, 2002.
[7] S. Mitragotri, D. Blankschtein and R. Langer, “Transdermal drug delivery using low-frequency sonophoresis, ” Pharmaceutical Research, Vol.13, No. 3, pp.411-420, 1996.
[8] Machet, et al., “In vitro phonophoresis of digoxin across hairless mice and human skin;thermal effect of ultrasound,”International Journal of Pharmaceutics, pp.39-45, 1996.
[9] 王紹榮,“兩種互補式金氧半數位類比轉換器積體化設計及應用之研究,” 暨南國際大學電機工程研究所,碩士論文, June 2005
[10] 賴育瑄,“高增益積體電路驅動放大器設計及應用之研究,”暨南國際大學電機工程研究所,碩士論文, June 2004
[11] P.R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits”
[12] Gunhee Han and Edgar Sanchez-Sinencio, “CMOS Transconductance Multipliers: A Tutorial,” IEEE Transaction on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 45, No. 12, December 1998
[13] B. Gilbert, “A precision four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, pp. 353–365, Dec.1968.
[14] “A high-performance monolithic multiplier using active feedback,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 364–373, Dec. 1974.
[15] J. N. Babanezhad and G. C. Temes, “A 20-V four-quadrant CMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 1158–1168,Dec. 1985.
[16] D. C. Soo and R. G. Meyer, “A four-quadrant NMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1174–1178, Dec. 1982.
[17] S. L. Wong, N. Kalyanasundaram, and C. A. T. Salama, “Wide dynamic range four-quadrant CMOS analog multiplier using linearized transconductance stage,” IEEE J. Solid-State Circuits, vol. SC-21, pp.1120–1122, Dec. 1986.
[18] R. Tawel, R. Benson, and A. P. Thakoor, “A CMOS UV-programmable nonvolatile synaptic array,” in Proc. IEEE Int. Joint Conf. Neural Networks, Seattle, vol. 1, pp. 581–585, July 1991.
[19] J. Ram´ırez and S. Ming-Shen, “The folded Gilbert cell: A low voltage high performance CMOS multiplier,” in Proc. IEEE Midwest Symp. Circuits and Syst., pp. 20–23, Aug. 1992.
[20] S. C. Qin and R. L. Geiger, “A _5 V CMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 1143–1146, Dec. 1987.
[21] Bang-Sup Song, “CMOS RF Circuits for Data Communications Applications,” IEEE Journal of Solid-State Circuits, Vol. SC-21, No. 2, April 1986.
[22] R. Jacob Baker, Harry W. Li, David E. Boyce, “CMOS Circuit Design, Layout, and Simulation”
[23] David A. Johns, Ken Martin, “Analog Integrated Circuit Design” John Wiley& Sons, New York,1997.
[24] Phillip E. Allen, Douglas R. Holberg, “CMOS Analog Circiut Design,” Oxford, New York, 2002.
[25] Sedra/Smith, “Microelectronic Circuits”
[26] Behzad Razavi, ”Design of Analog CMOS Integrated Circuits,” McGraw-Hill, New York,2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊