跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張書賓
研究生(外文):Shu-Bin Chang
論文名稱:超寬頻低雜訊放大器、射頻電感器及變壓器之設計與實作
論文名稱(外文):Design and Implementation of RF Inductor, Transformers and 3-5 GHz/3.1-10.6 GHz LNA.
指導教授:林佑昇林佑昇引用關係
指導教授(外文):Yo-Shen Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:98
中文關鍵詞:超寬頻低雜訊放大器射頻電感器變壓器
外文關鍵詞:3-5 GHzLNA/3.1-10.6 GHz LNARF InductorTransformer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:263
  • 收藏至我的研究室書目清單書目收藏:1
本論文焦點是低雜訊放大器和電感器。我們描述它們的基本特性參數而且最後在晶片上實現他們的設計。
第一部分是探討一個3.1 GHz到5 GHz的低雜訊放大器。本電路使用一個電阻式並並迴授來良好的寬頻匹配和相當平坦的增益。在這個電阻式並並迴授的放大器,輸入電阻被除以整個開迴路增益。模擬結果產生12 dB的放大而反射係數也都在-10 dB以下。得到的量測當果也和摸擬結果的趨勢相當接近。
第二部分是一個3.1 GHz到10.6 GHz低雜訊放大器設計,根據模擬結果顯示,此寬頻放大器有一個16 dB的增益且反射係皆小於-9 dB。
最後一個部份,一個遮蔽式的電感器被完成。
This thesis is focus on the LNA and inductor. We describe the fundamental performance parameter of them and realize their design on-chip finally.
The first part is “3.1 GHz to 5 GHz Ultra-wide band low-noise amplifier” using SiGe BiCMOS HBT technology. We use a resistive shunt-feedback-based amplifiers provide good wideband matching and flat gain. In the resistive shunt-feedback amplifier, input resistance is determined by the feedback resistance divided by the loop-gain of the feedback amplifier. The simulated results produced 12 dB gains in 3.1~5 frequency range and has good input and output matching below -10 dB. The trench of measured results is very approach with the simulated results.
The second part is about 0.18um CMOS 3.1 GHz to 10.6 GHz UWB LNA. The simulated results produced 16 dB gains in 3.1~10.6 frequency range and has good input and output matching below -9 dB.
At last, the inductors with pattern ground shield were fabricated with a TSMC 0.35 m RF SiGe Bi/CMOS technology on a p-type with thickness of 320 m.
Contents

Chapter 1 Introduction 1
1.1 Introduction 1
1.1.1 5GHz Frequency Bands 2
1.1.2 Motivations 3
1.2 Organization of the Thesis………………………………..…………………6
Chapter 2 Ultra Wide-Band (UWB) System………7
2.1 History of UWB 7
2.2 Circumstance of regulation and standardization 8
2.3 UWB Market 9
2.4 UWB Definition 11
2.5 Transmission Capacity 12
2.6 Technology Considerations 13
2.7 Conclusion 15
Chapter 3 LNA in the UWB System………………17
3.1 Induction…………………………………………………………………..17
3.2 Definition of Scattering Parameters in Amplifier…………………………20
3.3 Noise………………………………………………………………………25
3.3.1 Sources of Noise 25
3.3.2 Thermal Noise 26
3.3.3 Shot Noise 27
3.3.4 Flicker Noise 28
3.3.5 Noise in BJT and MOSFETs 29
3.3.6 Noise Factor 31
3.3.7 Two-Port Noise Figure for Source Admittance 34
3.3.8 Fris Noise Equation 36
3.4 Nonlinearity Analysis……………………………………………………. 38
3.4.1 Linearity and Nonlinearity (Harmonics) 38
3.4.2 Gain Compression 39
3.4.3 Intermodulation and Linearity 40
Chapter 4 UWB LNA Circuit Design……………..46
4.1 Introduction………………………………………………………………..46
4.2 Design of 3.1~5 GHz LNA 48
4.2.1 Narrow Band LNA Circuit 48
4.2.2 Circuit Description 50
4.2.3 The Simulated and Measured Results 53
4.2.4 Die Photograph of Circuit 57
4.2.5 Conclusion 58
4.3 Design of 3.1~10.6 GHz UWB LNA…………………………………….. 59
4.3.1 UWB Input Impedance Matching 59
4.3.2 Inductive Peaking technique for flat gain 61
4.3.3 The proposed UWB LNA 62
4.3.4 The Simulated and Measurement Results 63
4.3.5 Die Photograph of Circuit 66
4.3.6 Conclusion 66
Chapter 5 Study of Monolithic RF Inductors…….68
5.1 Induction 68
5.1.1 Monolithic RF Inductors 68
5.2 An Inductor with Similar Cantilever Beam 70
5.2.1 The Similar Cantilever Beam Inductor 71
5.2.2 The Measurement Results and Discussions 74
5.3 Study of Inductor with PGS Pattern 76
5.3.1 Inductor and Pattern Ground Shield Structures 77
5.3.2 Device Layout 80
5.3.3 Device Measurement 81
5.3.4 Measurement Results 82
5.4 Four Port Differential Transformers 83
5.5 Inductively-Coupled-Plasma (ICP) Technology 84
5.5 Conclusion 84
Chapter 6 Conclusion……………………………...87
Reference

[1]Jan Crols, Michiel Steyaert, “A fully Integrated 900 MHz CMOS Double Quadrature Downconverter,” ISSCC Digest of Technical Papers, pp. 136-137, Feb., 1995.
[2] Jan Craninckx and Michel S. J. Steyaert, “A 1.8-GHz CMOS low-phase-noise voltage controlled oscillator with prescaler,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1474–1482, December 1995.
[3] “Ultra-Wideband Opportunities Under the New FCC Waiver”, Freescale Semiconductor, Document Number: UWBOPPFCCWVRWP, Rev1, March/2005.
[4] Serigne DIA, Balwant GODARA, Frederic ALICALAPA, Alain FABRE, “ Ultra Wide-Band : State of the Art; Implementation of a Performerce-Cnotrollable Low Noise Amplifier”, Turk J Elec Engin, VOL.13, NO.1 2005.
[5] “In the matter of Revision of part 15 of the communication’s Rules Regarding Ultra-Wideband Transmission Systems”, FCC.
[6] “Report of the WGSE metting, 12-16 May 2003, Cavat (Croatia)” available on: http://www.ero.dk/EEE33BA9-4252-AD6C-7BE7EFB81898.W5Doc.
[7] “Cover Story: UWB emerges as standard for wireless home”, Nikkeil Electronics Asia, April 2003, available on: http://neasia.nikkeibp.com/nea/200304/comnet238948.htm1.
[8] “Trinity for media-rich wireless applications”, XtremeSpectrum, available on:
http://www.ieee.com/archive/uwb.pdf.
[9] “Ultra-Wideband (UWB) Technology”, White Paper, Intel, 2004.
[10] J. Foerster, E. Green, S. Somayazula and D. Leeper, \Ultra-Wideband Technology for Short or Medium Range Wireless Communicatins”, available on:
http:// developer.intel.com/itj/q22001/pdf/art4.pdf.
[11] J. Foerster, \Ultra-Wideband Technology, high-rate wireless communications”, available on:
http:// www.ieee.or.com/Archive/uwb.pdf.

[12] W. Namgoong, \Ultra-Wideband Digital Reciever-LNA design”, University of Southern California, September 2002, available on:
http://www.ultra.usc.edu/new_site/MURI/namgoong0502pptpdf.pdf.
[13] W. Alan Davis, Krishna Agarwal, “ Radio Frequency Circuit Design”, 2001.
[14]B. Razavi, “RF Microelectronics”, Prentice Hall Communication Engineering and Emerging Technology Series, 1998.
[15]T. H. Lee, The design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.
[16] A. van der Ziel, “Thermal Noise in Field Effect Transistors”, Proc. IEEE, , pp. 1801-1812, Aug. 1962.
[17] Chang-Wan Kim, Min-Suk Kang, Phan Tuan Anh, Hoon- Tae Kim, Sang-Gug Lee, “An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system”, Solid-State Circuits, IEEE Journal of, Volume: 40, Issue:2, Feb. 2005.
[18] S. S. Mohan et al., “Bandwidth extension in COMS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp.
[19] Tao Wang, Hsiao-Chin Chen, Hung-Wei Chiu, Yo-Sheng Lin1, Member, IEEE, Kuo-Wei Huang2, and Shey-Shi Lu, Senior Member, IEEE, “Micromachined CMOS LNA and VCO By CMOS Compatible ICP Deep Trench Technology, TMTT, 2005.
[20] Sun, B.; Fei Yuan; Opal, A.;.” Inductive peaking in wideband CMOS current amplifiers” , Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, Volume: 4 , 23-26 May 2004 Pages:IV - 285-8 Vol.4
[21] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-theory, design, and applications,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 1, pp. 288 –301, Jan 2002.
[22] 黃榮堂,陳俊志,林敬基,黃維達,蔡智維,李承曄,”微機電可變被動元件的研製與應用”, Chinese Institute of Automation Engineers, Vol.4 NO.3, 2004.
[23] H. W. Chiu, S. S. Lu, and Y. S. Lin, “A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10 mW DC power consumption on a thin (20 m) substrate,” IEEE Trans. on Microwave Theory and Techniques, vol. 53, no. 3, pp. 813-824, 2005.
[24] J. R. Long, “A low-voltage 5.1-5.8-GHz image-reject down-converter RF IC,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1320-1328, Sep. 2000.
[25] T. O. Dickson, M. A. LaCroix, S. Boret, D. Gloria, R. Beekens, and S. P. Voinigescu, “30-100GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits” IEEE Tran. on Microwave Theory and Techniques, vol. 53, no.1, pp. 123-134, Jan. 2005.
[26] C. H. Doan, S. Emami, and A. M. Niknejad, “Millimeter-wave CMOS design, ” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[27]K. Kwok, and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 652-660, March 2005.
[28]D. J. Cassan, and J. R. Long, “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18 m CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 427-435, March 2003.
[29]T.; Rejaei, B.; Burghartz, J.N.; “Substrate effects in monolithic RF transformers on silicon,” Microwave Theory and Techniques, IEEE Transactions on, pp. 377-383, Jan. 2002.
[30] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 734–752, May 1998.
[31] Tao Wang, Hsiao-Chin Chen, Hung-Wei Chiu, Shih-An Yu, Yo-Sheng Lin “An MEMS ICP Deep Trench Technology for CMOS MS/RF Integrated Circuits”
[32]H. M. Greenhouse, “Design of planar rectangular micro electronic inductors,” IEEE Trans. Parts, Hybrids and Packaging, vol. PHP-10, no. 2, pp. 101–109, June 1974.
[33]J. N. Burghartz, D. C. Edelstein, M. Souyer, H. A. Ainspan, and K. A. Jenkins, “RF circuit aspects of spiral inductors on Silicon,” IEEE J. Solid-State Circuits, vol. 33, pp. 2028–2034, Dec. 1998.
[34]J. N. Burghartz, D. C. Edelstein, M. Souyer, H. A. Ainspan, and K. A. Jenkins, “Multilevel spiral inductors using VLSI interconnect technology,” IEEE Electron Device Lett., vol. 17, pp. 428–430, Sept. 1996.
[35]J. M. Lopez-Villegas, J. Samitier, C. Cane, and P. Losantos, “Improvement of the quality factor of RF integrated inductors by layout optimization,” in Proc. Int. Microwave Symp., June 1998, pp. 169–172.

[36]K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, “Microstrip spiral directional coupler,” IEEE Trans. Microwave Theory Tech., vol. 29, pp. 680–689, July 1981.
[37]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, June 1989, pp. 661–664
[38]S. S. Mohan, C. P. Yue, M. del Mar Hershenson, S. S. Wong, and T. H. Lee, “Modeling and characterization of on-chip transformers,” in Proc. IEDM, Dec. 1998, pp. 531–534.
[39]T.; Rejaei, B.; Burghartz, J.N.; “Substrate effects in monolithic RF transformers on silicon,” Microwave Theory and Techniques, IEEE Transactions on, pp. 377-383, Jan. 2002.
[40]J. Zhou and D. J. Allstot, “Monolithic transformers and their application n a differential CMOS low-noise amplifier,” IEEE J. Solid-State ircuits, vol. 33, pp. 2020–2027, Dec. 1998.
[41]F. Behbahani, J. C. Leete, Y. Kishigami, A. Roithmeier, K. Hoshino, and A. A. Abidi, “A 2.4-GHz low-IF receiver for wideband WLAN in .6-_m CMOS—Architecture and front-end,” IEEE J. Solid-State Circuits, vol. 35, pp. 1908–1916, Dec. 2000.
[42]van der Heijden, M.P.; de Vreede, L.C.N.; Burghartz, J.N., “On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match” IEEE J. Solid-State Circuits, vol. 39, pp. 1727 - 1736, Oct. 2004.
[43]D.B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, pp. 329-330, Feb. 1996.
[44]A. Hajimiri, and T. H. Lee, “A General of Phase Noise in Electrical Oscillator” IEEE J. Solid-State Circuits, vol. 33, NO. 2, pp. 179-194, Feb. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top