跳到主要內容

臺灣博碩士論文加值系統

(3.234.211.61) 您好!臺灣時間:2021/10/18 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威豪
研究生(外文):Wei-Hao Chen
論文名稱:金屬/半導體接面與表面能位對矽奈米線元件特性之影響
論文名稱(外文):Impact of Metal/Semiconductor Interface and Surface States on Electrical Properties of Silicon Nano Wire Devices
指導教授:許孟烈許鉦宗
指導教授(外文):Meng-Lieh SheuJeng-Tzong Sheu
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:66
中文關鍵詞:奈米金屬/半導體接面表面能位矽奈米線
外文關鍵詞:Metal/Semiconductor InterfaceSurface Stateschemical gatingAEAPTMSgold nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
我們成功的製作出奈米級化學閘極互補式金氧半場效電晶體反向器。利用增強源極、汲極的雜質參雜濃度,並在其中形成鈦金屬矽化物,將可提高奈米線場效電晶體之開關電流比1.4倍以上,並使其在經過表面修飾過程中,擁有較穩定的開關電流。
在此一穩定的元件上,以(2-氨基丙烷) 3-乙氧基矽烷化合物(AEAPTMS),及金奈米粒子進行表面修飾,元件中矽通道的表面能位,在表面修飾後,會因帶不同極性的化學分子鍵結於矽導線上而被調變,並進而影響元件的起始電壓。
元件經AEAPTMS 進行表面修飾後,AEAPTMS表面的氨離子(NH3+)會因所帶的正電荷,而對矽奈米線有一如同正閘極電壓的影響,進而使元件的起始電壓値往負的方向偏移。相反的,矽奈米線在經過金奈米粒子的表面修飾後,金粒子表面所吸附的檸檬酸鹽(COO-)會對下方的矽奈米線有一如同負閘極偏壓的影響,進而使元件的起始電壓値往正的方向偏移。
利用一對以金屬電極串接的奈米線場效電晶體,分別以AEAPTMS (濃度為2.2mM) 及金奈米粒子進行表面修飾,我們可得到兩個擁有不同起始電壓的場效電晶體,當將閘極電壓操作在-6伏特及6伏特之間時,此兩電晶體會有如金氧半場效電晶體反向器一般的工作特性。此奈米級化學閘極互補式金氧半場效電晶體反向器擁有6.67的最高電壓增益。
A chemical gating CMOS inverter has successfully demonstrated and characterized in this thesis. Nanowire FETs ( NW FETs ), fabricated on silicon-on-insulator wafer, are defined by e-beam lithography. By raising doping concentration and forming TiSi2 in source and drain contact area, we are able to achieve a device with large On/Off current ratio with very high stability. Surface modification carries out by N-(2-Aminoethyl) -3-aminopropyl- trimethoxysilane (AEAPTMS) with concentration of 2.2 mM and gold nanoparticles (gold NPs) solution. The NH2 functional group of AEAPTMS is protonated to NH3+ and acts as a positive gate bias, which makes the threshold voltage (Vth) of the AEAPTMS-modified NW FET shift toward the negative voltage direction. On the contrary, the citrate ions (COO-) adsorbed on the surface of gold NPs and acts as a negative gate bias, which makes the Vth of the gold NPs-modified nanowire FET shift toward the positively.
Two NW FETs selectively modified by AEAPTMS and gold NPs were connected in series via Ti/Au electrode. Due to surface modification, two FETs are able to work complementally when gate voltage is in the range from -6 and 6 V. The voltage gain (absolute value of the derivative of VOUT-VIN relation) of the chemical gating CMOS inverter up to 6.67 has been achieved.
Chapter 1 Introduction
1-1 Overview of Nano Electronic Devices
1-2 Metal/Semiconductor Interface
1-3 Surface State Modification
1-4 Chemical Gating CMOS
1-5 Overview of Thesis
Chapter 2 Metal/Semiconductor Interface and Surface States of Silicon NW Devices
2-1 Introduction to Metal/Semiconductor Interface and Surface States of Silicon NW Devices
2-2 Carrier Transport Mechanism
2-3 Semiconductor and Metal Interface Modification
2-3-1 Doping concentration
2-3-2 Silicide formation
2-4 Modification the Surface State of SiNW Devices
2-5 Device Fabrication and Electrical Measurement
2-5-1 Device fabrication
2-5-2 Methods of parameter extraction
2-5-3 Electrical measurement
2-6 Results and Discussion
2-6-1 Relations between doping concentration and Vth shift and On/Off current ratio
2-6-2 Determine Ti silicide forming temperature
2-6-3 Device with/without TiSi2 formation in contact area
2-6-3-1 Doping concentration: boron 1e16 cm-3
2-6-3-2 Doping concentration: boron 1e18 cm-3
2-6-3-3 Doping concentration: boron 1e20 cm-3
2-6-4 Channel Surface Modification
2-6-4-1 AEAPTMS and gold NPs modification
2-6-4-2 Linear scale Id-Vg curve throughout surface
modification
2-6-4-3 Devices without TiSi2 formation in contact area
2-6-4-4 Id-Vg curve of 1e18 cm-3 boron doped device with TiSi2
2-6-4-5 Id-Vg curve of 1e20 cm-3 boron doped device with
TiSi2
2-7 Chapter Summary
Chapter 3 Chemical Gating CMOS
3-1 Introduction to Chemical Gating CMOS
3-2 Chemical Gating CMOS Fabrication and Measurement
3-2-1 Chemical gating CMOS fabrication
3-2-2 Electrical Measurement
3-2-3 AFM analysis
3-2-4 SEM analysis
3-3 Results and Discussion
3-3-1 Id-Vg curve after selective modification
3-3-2 Chemical gating CMOS VIN-VOUT transition curve
3-3-3 AFM analysis image
3-3-4 SEM analysis image
3-4 Chapter Summary
Chapter 4 Conclusion and Suggestions for Future Work
4-1 Conclusion
4-2 Suggestions for Future Work
[1] Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000).
[2] Duan, Y. Huang, Y.Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001).
[3] Y. Cui, C.M. Lieber, Science 291,851 (2001).
[4] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C.M. Lieber, Science 294,1313 (2001).
[5] Leland Chang, Yang-Kyu Choi, Jakub Kedzierski, Nick Lindert, Peiqi Xuan, Jeffrey Bokor, Chenming Hu, and Tsu-Jae King, IEEE circuit and device magazine, 35(2003).
[6] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. vol. 4, no. 5, p. 89, (1964).
[7] Jae-Young Yu, Sung-Wook Chung, and James R. Heath, J. Phys. Chem. B 104, 11864-11870 (2000).
[8] Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber Nano letters Vol. 3, No. 2,149-152 (2003).
[9] Dunwei Wang, Ying-Lan Chang, Qian Wang, Jien Cao, Damon B. Farmer, Roy G. Gordon, and Hongjie Dai, J. Am. Chem. Soc. 126, 11602-11611 (2004).
[10] D. A. Neamen, “Semiconductor Physics and Devices, Basic Principles” (Irwin, Chicago, 1997).
[11] Yi Cui, Semiconductor NW for nanotechnology: Synthesis, Properties, Nanoelectronics, and nanosensor. Ph.D. Thesis, Harvard University, (2002).
[12] T. Sato, H. Ahmed, D. Brown and B. F. G. Johnson, J. Appl. Phys. 82, 696 (1997).
[13] T. Satoa, D. G. Hasko and H. Ahmed, J. Vac. Sci. Technol. B 15(1), Jan/Feb., 45 (1997).
[14] 劉如熹, 無機與有機奈米混成技術及其應用,奈米技術專刊.
[15] S. M. Sze “Physics of Semiconductor Devices” 2nd Edition 1981.
[16] R. W. Mann, L. A. Clevenger, P. D. Agnello, F. R. White, IBM J. Res. Dev. (1995).
[17] Pourfath, M.; Ungersboeck, E.; Gehring, A.; Cheong, B.H.; Park, W.; Kosina, H.; Selberherr, S.; “Improving the ambipolar behavior of Schottky barrier carbon nanotube field effect transistors”, IEEE CNF. (2004).
[18] Xiaolei Liu, Zhicheng Luo, Song Han, Tao Tang, Daihua Zhang, and Chongwu Zhoua, Appl. Phys. Lett.86, 243501 (2005).
[19] Semiconductor Devices Physics and technology, 2nd edition, S.M. Sze (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top