跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏全
研究生(外文):Bo-Chiuan Chen
論文名稱:時空區塊編碼之多輸入多輸出無線正交分頻多工系統中應用領航信號輔助的通道估測之研究
論文名稱(外文):Pilot-Assisted Channel Estimation for STBC-Based Wireless MIMO-OFDM Systems
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:108
中文關鍵詞:正交分頻多工多輸入多輸出通道估測領航信號配置空時區塊編碼
外文關鍵詞:OFDMMIMOdiversitychannel estimationSTBCpilot assignment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
對於正交分頻多工 (OFDM) 傳輸系統而言,能夠極為有效地來降低多重路徑干擾下
所產生的頻率選擇性衰落效應,同時頻寬資源的使用效率亦可以獲得提昇,是為其最
大的特點。多輸入多輸出 (MIMO) 之傳輸架構能夠提供多個獨立的無線通道,透過
裝置於傳送與接收兩端上的多根天線來同時收送多個訊號,運用空間分集的技術提昇
訊號品質。將多天線之傳輸結構與正交分頻多工系統相互結合之後,即可形成所謂的
多輸入多輸出正交分頻多工 (MIMO-OFDM) 無線傳輸系統,預期可以同時兼具前述
兩種傳輸機制的優點,使得通訊的品質能夠更進一步地獲得提昇。而在近年來,領航
信號輔助的通道估測技術應用於正交分頻多工系統中已經相當地成熟,許多研究成果
也驗證了其良好的估測效果與便於實現的特色。然而此類通道估測技術若運用於多天
線架構下的正交分頻多工系統時,領航信號之設計與配置上的調整則是必需的,同時
其估測結果將直接影響到多天線系統的接收端對於多重接收訊號之時空區塊解碼的
正確度。在本論文中,將詳實地探討領航信號輔助式通道估測技術應用於時空區塊編
碼之多輸入多輸出正交分頻多工系統,在多種戶外無線通訊環境中之效能,並且說明
領航信號在多天線系統中的設計特點與配置方式,將其優點與便利性加以推廣實現,
以達成整體系統效能與通訊品質均獲得增進與保障之最終目標。
Orthogonal frequency division multiplexing (OFDM) transmission
schemes can reduce multipath propagation effects very well while
saving quite a little available bandwidth. Multiple-input
multiple-output (MIMO) architectures can provide multiple man-made
uncorrelated channels for transmitting/receiving replicas of same
signals simultaneously through different antennas at different
symbol duration to take diversity gains. The object of channel
estimation is to guess the probable responses of wireless channels
skillfully. The estimated channel responses can facilitate the
receiver to compensate the distorted signals for ensuring reliable
data transmissions. For MIMO-OFDM systems, channel estimation is
more necessary for received signals' detection which is actually for
the decoding procedure of space-time block coding (STBC) to separate
the superposition results from multiple transmitted signals.
Its accuracy directly affects the overall performance of MIMO-OFDM
systems. Pilot-symbol-assisted channel estimation (PSACE) techniques
with various pilot assignments have been successfully applied to
OFDM systems to obtain a notable enhancement. In order to utilize
the advantages of PSACE for extending to MIMO-OFDM systems, some
modifications of this estimation scheme must be considered.
In addition, the benefits of using MIMO architectures will be
illustrated in COST 207 rural area, typical urban and bad urban
environments. Through bit error rate performance analysis, we can
demonstrate that the STBC-based MIMO-OFDM systems are well qualified
for providing guarantees of linkage quality in mobile wireless communications
【目錄】

目錄 ......................................................................................... I
第一章 導論 ................................................................ II
第二章 正交分頻多工系統與多輸入多輸出傳輸架構 ............................. III
第三章 無線傳輸通道 ........................................................ IV
第四章 領航信號配置與通道估測技術 ........................................... V
第五章 結論與未來工作 ...................................................... VI


Contents

Abstract ..................................................................... i
Contents ................................................................... iii
List of Tables .............................................................. iv
List of Figures ............................................................ vii

1 Introduction .............................................................. 1
1.1 Preliminary .......................................................... 1
1.2 History and Basic Concepts of OFDM Systems ........................... 3
1.3 Concepts and Categories of MIMO Structures ........................... 8
1.4 Organization of the Thesis .......................................... 10

2 OFDM Systems and MIMO Architectures ...................................... 11
2.1 Preliminary ......................................................... 11
2.2 OFDM Systems ........................................................ 12
2.2.1 Mathematical System Model .................................... 12
2.2.2 ISI and ICI Cancellation by Adding Cyclic Prefix ............. 17
2.2.3 Selection of System Parameters ............................... 20
2.3 MIMO Architectures .................................................. 22
2.3.1 Two Main Coding Schemes of STC ............................... 22
2.3.2 Concepts and Techniques of Receiver Diversity Schemes ........ 23
2.3.3 Transmitter Diversity and STBC-MIMO Structures ............... 26
2.4 STBC-Based Wireless MIMO-OFDM Systems ............................... 31
2.4.1 An Initial System Model ...................................... 32
2.4.2 The Performance Evaluation Under AWGN Channel ................ 34
2.4.3 Channel Estimation Issues .................................... 37

3 Wireless Mobile Radio Propagation Channel ................................ 39
3.1 Preliminary ......................................................... 39
3.2 The Correlation among Multiple Channels ............................. 41
3.3 Fading Channel Model Simulators ..................................... 42
3.4 Simulation Results .................................................. 45

4 Pilot Assignment and Channel Estimation .................................. 55
4.1 Preliminary ......................................................... 55
4.2 Estimation Issues for STBC-OFDM Systems ............................. 56
4.3 System Model Description ............................................ 57
4.4 Pilot Assignment on Multiple Antennas ............................... 63
4.5 Proposed Channel Estimation Algorithm ............................... 67
4.6 System Parameters and Channel Models ................................ 69
4.7 Simulation Analysis ................................................. 72

5 Conclusions and Future Works ............................................. 81

Appendix A .................................................................. 83
A The Magic Idea for OFDM Systems .......................................... 84
A.1 DFT/IDFT Implementation Techniques .................................. 84

Bibliography ................................................................ 86
[01] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, Boston, 2000.

[02] L. Hanzo, M. Munster, B. J. Choi and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting, John Wiley & Sons, 2003.

[03] S. G. Glisic, Advanced Wireless Communications - 4G Technologies, John Wiley & Sons, 2004.

[04] C. Langton, Orthogonal Frequency Division Multiplex (OFDM) Tutorial, Intuitive Guide to Principles of Communications on www.complextoreal.com, 2004.

[05] M. Oltean, An Introduction to Orthogonal Frequency Division Multiplexing, Universitatea Politechnica Timisoara, 2004.

[06] O. Edfors, M. Sandell, J.-J. van de Beek, D. Landstrom and F. Sjoberg, An Introduction to Orthogonal Frequency-Division Multiplexing, Research Report TULEA at the Division of Signal Processing, Lulea University of Technology, Sept. 1996.

[07] D. Matiae, OFDM as a Possible Modulation Technique for Multimedia Applications in the Range of mm Waves, Introduction to OFDM, II edition 10/30/98/TUD-TVS.

[08] H. W. Yang, A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface, IEEE Communications Magazine, vol. 43, no. 1, pp. 53--60, Jan. 2005.

[09] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Ye (Geoffrey) Li, M. A. Ingram and T. G. Pratt, Broadband MIMO-OFDM Wireless Communications, Proceedings of the IEEE, vol. 92, no. 2, pp. 271--294, Feb. 2004.

[10] D. Gesbert, M. Shafi, D. S. Shiu, P. J. Smith and A. Naguib, From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems, IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 281--302, Apr. 2003.

[11] G. D. Durgin, Space-Time Wireless Channels, Prentice Hall PTR, New Jersey, 2003.

[12] S. M. Alamouti, A Simple Transmit Diversity Technique for Wireless Communications, IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451--1458, Oct. 1998.

[13] V. Tarokh, H. Jafarkhani and A. R. Calderbank, Space-Time Block Coding for Wireless Communications: Performance Results, IEEE Journal on Selected Areas in Communications, vol. 17, no. 3, pp. 451--460, Mar. 1999.

[14] A. van Zelst, R. van Nee and G. A. Awater, Space Division Multiplexing (SDM) for OFDM Systems, IEEE Vehicular Technology Conference, Bell Labs, Lucent Technologies, pp. 1070--1074, 2000.

[15] Y. Ogawa, K. Nishio, T. Nishimura and T. Ohgane, A MIMO-OFDM System for High-Speed Transmission, IEEE 58th Vehicular Technology Conference, vol. 1, pp. 493--497, Oct. 2003.

[16] V. Tarokh, H. Jafarkhani and A. R. Calderbank, Space-Time Block Codes from Orthogonal Designs, IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456--1467, Jul. 1999.

[17] S. Coleri, M. Ergen, A. Puri and A. Bahai, Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems, IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223--229, Sept. 2002.

[18] J. W. Choi and Y. H. Lee, Design of the Optimum Pilot Pattern for Channel Estimation in OFDM Systems, IEEE Communications Society Globecom 2004, vol. 6, pp. 3661--3665, Nov. 2004.

[19] S. C. Liang and W. L. Wu, Channel Estimation Based on Pilot Subcarrier in Space-Time Block Coded OFDM System, IEEE International Conference on Communication Technology Proceedings, vol. 2, pp. 1795--1798, Apr. 2003.

[20] H. Zhang, J. M. Chen, Y. X. Tang and S. Q. Li, Analysis of Pilot-Symbol Aided Channel Estimation for MIMO-OFDM Systems, IEEE International Conference on ICCCAS 2004, vol. 1, pp. 299--303, Jun. 2004.

[21] D. S. Wang, G. X. Zhu and Z. P. Hu, Optimal Pilots in Frequency Domain for Channel Estimation in MIMO-OFDM Systems in Mobile Wireless Channels, IEEE 59th Vehicular Technology Conference, vol. 2, pp. 608--612, May 2004.

[22] D. M. Teran and R. P. T. Jimenez, Channel Estimation for STBC-OFDM Systems, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, pp. 283--287, Jul. 2004.

[23] W. G. Jeon, K. H. Paik and Y. S. Cho, An Efficient Channel Estimation Technique for OFDM Systems with Transmitter Diversity, The 11th IEEE International Symposium on PIMRC 2000, vol. 2, pp. 1246--1250, Sept. 2000.

[24] Z. S. Wu, J. Q. He and G. X. Gu, Design of Optimal Pilot-Tones for Channel Estimation in MIMO-OFDM Systems, IEEE Wireless Communications and Networking Conference, vol. 1, pp. 12--17, Mar. 2005.

[25] H. J. Liu, R. Hoshyar and R. Tafazolli, Performance Analysis of Training and Pilot Scheme in Adaptive MIMO-OFDM Systems, CCSR, University of Surrey, Guildford, Surrey, GU2 7XH, U.K.

[26] R. Negi and J. Cioffi, Pilot Tone Selection for Channel Estimation in a Mobile OFDM System, IEEE Transactions on Consumer Electronics, vol. 44, no.3, pp. 1122--1128 Aug. 1998.

[27] T. S. Rappaport, Wireless Communications - Principles and Practices, Prentice Hall PTR, New Jersey, 1996.

[28] S. Haykin and M. Moher, Modern Wireless Communications, Prentice Hall PTR, New Jersey, 2005.

[29] A. J. Paulraj and C. B. Papadias, Space-Time Processing for Wireless Communications, IEEE Signal Processing Magazine, vol. 14, no. 6, pp. 49--83, Nov. 1997.

[30] V. Tarokh, N. Seshadri and A. R. Calderbank, Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction, IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744--765, Mar. 1998.

[31] H.-P. Lin, Performance Evaluation of the STBC-OFDM MIMO Systems in the Correlated Rayleigh Fading Channels, Journal of National Taipei University of Technology, vol. 37-1, pp. 169--178, Dec. 2003.

[32] R. B. Ertel and J. H. Reed, Generation of Two Equal Power Correlated Rayleigh Fading Envelopes, IEEE Communications Letters, vol. 2, no. 10, pp. 276--278, Oct. 1998.

[33] N. C. Beaulieu, Generation of Correlated Rayleigh Fading Envelopes, IEEE Communications Letters, vol. 3, no. 6, pp. 172--174, Jun. 1999.

[34] N. C. Beaulieu and M. L. Merani, Efficient Simulation of Correlated Diversity Channels, IEEE Wireless Communications and Networking Conference, vol. 1, pp. 207--210, Sept. 2000.

[35] W. C. Jakes, Microwave Mobile Communications, John Wiley & Sons, New York, 1974.

[36] M. Patzold and F. Laue, Statistical Properties of Jakes' Fading Channel Simulator, IEEE 48th Vehicular Technology Conference, vol. 2, pp. 712--718, May 1998.

[37] P. Dent, G. E. Bottomley and T. Croft, Jakes Fading Model Revisited, Electronics Letters, vol. 29, no. 13, pp. 1162--1163, Jun. 1993.

[38] M. F. Pop and N. C. Beaulieu, Limitations of Sum-of-Sinusoids Fading Channel Simulators, IEEE Transactions on Communications, vol. 49, no. 4, pp. 699--708, Apr. 2001.

[39] M. F. Pop and N. C. Beaulieu, Design of Wide-Sense Stationary Sum-of-Sinusoids Fading Channel Simulators, IEEE International Conference on Communications, vol. 2, pp. 709--716, Apr. 2002.

[40] Y. X. Li and X. J. Huang, The Simulation of Independent Rayleigh Faders, IEEE Transactions on Communications, vol. 50, no. 9, pp. 1503--1514, Sept. 2002.

[41] J. Wang, Y. Q. Qiang, B. Zhang and D. B. Li, Comparison of Statistical Properties between an Improved Jakes' Model and the Classical One, The 14th IEEE Internatonal Symposium on PIMRC Proceedings, vol. 1, pp. 380--384, Sept. 2003.

[42] Y. H. R. Zheng and C. S. Xiao, Simulation Models with Correct Statistical Properties for Rayleigh Fading Channels, IEEE Transactions on Communications, vol. 51, no. 6, pp. 920--928, Jun. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top