跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹駿
研究生(外文):Taso chun
論文名稱:利用序列虹膜影像進行辨識與抗偽造之研究
論文名稱(外文):Study of Recognition and Anti-forgery from iris image sequence
指導教授:陳文雄陳文雄引用關係
指導教授(外文):Chen Wen-Shiung
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:61
中文關鍵詞:生物辨識虹膜辨識識別活體偵測影像品質拉氏金字塔轉換特徵眼
外文關鍵詞:BiometricsIris RecognitionIdentificationDetection LivenessImage QualityLaplacian Pyramid Transformationeigeniris
相關次數:
  • 被引用被引用:7
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
人終其一生,人眼虹膜結構除非眼睛病變否則不會產生任何變化。這是它的優點也是它的缺點,優點:虹膜穩定度高,運用在辨識上有很好的效果。缺點:一旦被竊取仿造會造成莫大的損失。本論文將會深入研究序列虹膜影像進行辨識與防偽之基本原理。系統架構,主要包含五個模組:影像擷取、活體偵測、影像前處理、特徵萃取與分類辨識模組。首先,擷取設備取得連續人眼影像,再經由活體偵測模組利用影像處理演算法,將取出序列人眼影像的資訊,來判斷連續虹膜影像的真偽。經由前處理模組利用影像處理演算法,自人眼影片中取得虹膜部份。再利用虹膜影像邊緣偵測與反射光源面積之差異,來估測影像品質因素,並利用所估測的分數取得一張最好的虹膜影像進行辨識。然後使用特徵萃取模組,利用拉氏金字塔轉換(Laplacian Pyramid Transform)與特徵眼(Eigeniris)萃取代表身分的特徵碼。最後,分類辨識模組,則利用特徵碼進行辨識或註冊的動作。
以實驗室自建的資料庫,總共有25個志願者的虹膜影片,共175個影片,以及偽造虹膜影片,共175個影片。對系統做活體偵測進行測試,以等錯率(Equal Error Rate, EER)為標準,辨偽率可達96.57%。甚至在要求安全性較高的系統中錯誤接收率(False Acceptance Rate, FAR)設定為0%的情況下,辨識成功率(Acceptance of Authentic, AA)可達92.43%。本論文會針對實驗的數據結果進行分析比較,來驗證建構本系統時所提的相關理論,以供後續研究作為參考。
Through the whole human life, the structure of iris does not change unless the eyes get diseased. That is its advantage as well as disadvantage. Advantage: the Iris is highly stable and can result in very good recognition. Disadvantage: there will be a great loss if it is stolen or counterfeited. We will study deeply the methods for recognition and anti-forgery from iris image sequence. The system architecture includes five modules: image acquisition, detection liveness, image pre-processing, feature extraction and recognition modules. Firstly, our system captures a sequence of iris images of a human eye. The detection liveness module adopts coefficients from the input iris sequences to determine if the eyes are live or just replay the fake iris images. The preprocessing module uses some image processing algorithms to extract the region of interest of iris from the sequence of human eye images, it can use differences resulted from the iris image edge detection and the area of light reflection to estimate the iris image quality. Then, the extraction module uses Laplacian pyramid transformation and eigeniris to extract the characteristic codes for identity. Finally, the system applies these characteristic codes for iris matching in recognition module.
We have designed experiments for some assumed interesting scenarios, and launched them on our video database which consists of 175 iris image sequences of 25 classes, and 175 fake iris image sequences. The proposed mechanism can successfully detect the forgery attacks. The differentiation forgery rate of the system for video input data can achieve up to EER=96.57%. Even under the circumstance of false acceptance rate (FAR)0%, the system still approaches the differentiation rate in 92.43%. This thesis analyzes the experiment results and verity the proposed methods for further research.
論文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 緒論 1
1.1 研究動機 1
1.2 虹膜辨識技術之發展與研究 3
1.3 研究目標與方向 7
1.4 論文大綱與組織 8
第二章 人眼虹膜所需要之影像處理技術 9
2.1 影像強化 9
2.1.1 基本灰階轉換 9
2.1.2 空間域濾波 11
2.2 形態學影像處理 13
2.3 圓與曲線偵測 16
2.3.1 圓偵測 16
2.3.2 曲線偵測 18
第三章 序列虹膜影像活體偵測及影像品質估測與選取 19
3.1 偽造攻擊情節介紹 19
3.2 活體偵測 21
3.2.1 虹膜定位 21
3.2.2 活體辨識方法 27
3.3 影像品質估計與選取 29
3.3.1 影像邊緣估計影像品質 29
3.3.2 反射光源面積估測影像品質 31
3.3.3 影像選取 33
第四章 具有抗偽造之序列虹膜辨識系統 34
4.1 系統架構 34
4.2 影像擷取模組 35
4.3 活體偵測模組 36
4.4 影像前處理模組 36
4.4.1 虹膜定位 36
4.4.2 虹膜分割與正規化 38
4.4.3 影像品質估測與選取 40
4.4.4 影像強化 40
4.5 特徵萃取模組 41
4.5.1 拉氏金字塔轉換 42
4.5.2 特徵眼 43
4.5.3 特徵萃取-主成分轉換 45
4.6 分類辨識模組 48
第五章 具有防偽之虹膜辨識系統實作與實驗結果 50
5.1 實驗環境 50
5.2 系統效能的評估 52
5.3 拉氏金字塔轉換 53
5.4 偽造虹膜欺騙系統 55
5.5 活體辨識 56
5.6 實驗結果與討論 57
第六章 結論與建議 58
6.1 結論 58
6.2 後續研究方向 59
參考文獻 60
[1]J. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, No. 11, pp. 1148-1161, Nov. 1993.
[2]──, “Biometric personal identification system based on iris analysis,” United States Patent, No. 5291560, 1994.
[3]──, “How iris recognition works,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 14, No. 1, pp. 21-30, Jan. 2002.
[4]R.P. Wildes, “Automated, non-invasive iris recognition system and method,” United States Patent, No. 5572596, 1994.
[5]──, “Iris recognition: an emerging biometric technology,” Proc. of the IEEE, vol. 85, No. 9, pp. 1348-1363, 1997.
[6]黃智任,「應用人眼特徵於身分辨認的系統介紹」,影像與識別,第三卷第七期,92~94頁,民國85年。
[7]J.D. Woodward, “Biometrics: privacy’s foe or privacy’s friend?” Proc. of the IEEE, vol. 85, No. 9, pp. 1480-1492, 1997.
[8]http://www.iriscan.com/, Homepage of Iridian Technologies.
[9]W. Boles and B. Boashash, “A human identification technique using images of the iris and wavelet transform,” IEEE Trans. on Signal Processing, vol. 46, No. 4, pp. 1185-1188, 1998
[10]S. Lim et al., “Efficient iris recognition through improvement of feature vector and classifier,” Electronics and Telecommunications Research Institute (ETRI) Journal, vol. 23, No. 2, pp.61-70, 2001.
[11]Y. Zhu, T. Tan and Y. Wang, “Biometric personal identification based on iris patterns,” Proc. International Conference on Pattern Recognition, vol. 2, pp. 805-808, 2000.
[12]L. Ma et al., “Personal identification based on iris texture analysis,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, No. 12, pp. 1519-1533, 2003.
[13]袁上元,建構於碎形維之自動人眼虹膜辨識系統,逢甲大學,碩士論文,民國89年。
[14]林永淋,建構於圓規維與KL轉換之自動人眼虹膜辨識系統,國立暨南國際大學,碩士論文,民國91年。
[15]沈耿賜,建構於淩波轉換與能量特性的虹膜自動辨識系統,國立暨南國際大學,碩士論文,民國91年。
[16]池坤徽,以凌波轉換為基礎的虹膜辨識系統,國立暨南國際大學,碩士論文,民國93年。
[17]張順訓,虹膜辨識系統之影像擷取機構設計與虹膜影像品質估計之研究,國立暨南國際大學,碩士論文,民國94年。
[18]S. Nanavati, M. Thieme and R. Nanavati, Biometrics: Identity Verification in a Networked World, John Wiley & Sons, 2002.
[19]B. Ganeshan, D. Theckedath, R. Young and C. Chatwin, “Biometric iris recognition system using a fast and robust iris localization and alignment procedure,” Optics and Lasers in Engineering, vol. 44, pp. 1-24, 2006
[20]M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive Neuroscience, vol. 3, No. 1, pp. 71-86, 1991.
[21]蔡博仁,「多重特徵萃取與支持向量器為基礎的虹膜辨識技術」,國立暨南國際大學,碩士論文,民國94年。
[22]吳健康,數位影像分析,儒林圖書,台北,民國81年。
[23]R.C. Gonzalez and R.E. Woods, Digital Image Pprocessing, 2nd Edition, Prentice-Hall, New Jersey, 2002.
[24]J.R. Parker, Algorithms for image processing and computer vision, John Wiley & Sons, 1996.
[25]繆紹綱,數位影像處理─活用Matlab,全華科技圖書,台北市,民國88年。
[26]鍾國亮,影像處理與電腦視覺,東華書局,台北市,民國91年。
[27]T.C. Chen and K.L. Chung, “An efficient randomized algorithm for detecting circles,” Computer Vision and Image Understanding, vol. 83, No. 2, pp. 172-191, 2001.
[28]N. K. Ratha, J. H. Connell and R. M. Bolle, “Enhancing security and privacy in biometric-based authentication Systems,” IBM Systems Journal, vol. 40, No. 3, 2001.
[29]T. Matsumoto, “Gummy and conductive silicone rubber fingers: importance of vulnerability analysis,” Proceedings of the 8th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology, vol. 2501, pp. 574-576, 2002.
[30]G. O. Williams, “Iris recognition technology,” IEEE Aerospace and Electronics Systems Magazine, vol. 12, No. 4, pp. 23-29, 1997.
[31]A. R. Webb, Statistical Pattern Recognition, 2nd Edition, John Wiley & Sons, 2002.
[32]H. Wang, S. Z. Li and Y. S. Wang, “Face recognition under varying lighting condition using self quotient image,” Proc. of the IEEE, pp.819-824, 2004.
[33]B. Noble and J. W. Daniel, Applied Linear Algebra, 3rd Edition, Prentice Hall, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top