|
[1]N. Herscovici and D. M. Pozar, “Full-wave analysis of aperture-coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 7, pp. 1108—1114, July 1991. [2]N. L. VandenBerg and L. P. B. Katehi, “Broadband vertical interconnects using slot-coupled shielded microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 1, pp. 81—88, Jan. 1992. [3]C. Chen, M. J. Tsai, and N. G. Alexopoulos, “Optimization of aperture transitions for multiport microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2457—2465, Dec. 1996. [4]L. Zhu and K. Wu, “Ultrabroad-band vertical transition for multilayer integrated circuits,” IEEE Microwave Guided Wave Lett., vol. 9, no. 11, pp. 453—455, Nov. 1999. [5]J. Sercu, N. Fache, F. Libbrecht, and P. Lagasse, “Mixed potential integral equation technique for hybrid microstrip-slotline multilayered circuits using a mixed rectangular-triangular mesh,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 5, pp. 1162—1172, May 1995. [6]A. M. Tran and T. Itoh, “Analysis of microstrip lines coupled through an arbitrary shaped aperture in a thick common ground plane,” in Proc. IEEE-MTT Symp., pp. 819—822, Jan. 1993. [7]M. Davidovitz, R. A. Sainati, and S. J. Fraasch, “A non-contact interconnection through an electrically thick ground plate common to two microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 4, pp. 753—759, April 1995. [8]D. M. Pozar, “Analysis and design of cavity-coupled microstrip couplers and transitions,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 1034—1044, March 2003. [9]P. R. Haddad and D. M. Pozar, “Characterisation of aperture coupled microstrip patch antenna with thick ground plane,” Electron. Lett., vol. 30, no. 14, pp. 1106—1107, July 1994. [10]P. R. Haddad and D. M. Pozar, “Analysis of two aperture-coupled cavity-backed antennas,” IEEE Trans. Antennas Propagat., vol. 45, no. 12, pp. 1717—1726, Dec. 1997. [11]E. S. Li, J. C. Cheng, and C. C. Lai, “Designs for broad-band microstrip vertical transitions using cavity couplers,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 464—472, January 2006. [12]E. S. Li, J. C. Cheng, and C. C. Lai, “A hybrid MOM/FEM technique for modeling broadband cavity-coupled microstrip vertical transitions,” Proc. IEEE Int. Antennas Propagat. Symp., July 2006. [13]Broad-band microstrip mixer design: The Butterfly Mixer, Hewlett-Packard, App. note no. 976, 1980. [14]H. A. Atwater, “The design of the radial line stub: A useful microstrip circuit element,” Microwave J., pp. 149—156, Nov. 1985. [15]P. H. Rao, V. F. Fusco, and R. Cahill, “Linearly polarized radial stub fed high performance wideband slot antenna,” Electron. Lett., vol. 37, no. 6, pp. 335—337, March 2001. [16]RF, microwave and millimeter-wave coaxial connectors, adaptors, tools and accessories, M/A-COM, Catalog no. 1D1011D, 1997. [17]Y. W. Jang, “Experimental characteristics of a printed open-slot antenna with reflector for PCS, DCS, and IMT-2000,” Microwave and Optical Tech. Lett., vol. 41, No. 5, pp. 348—350, June 2004. [18]J. C. Cheng, “Theoretical modeling of MMIC’s using wavelets parallel computing and hybrid MOM/FEM technique,” Ph. D. dissertation, the University of Michigan, 1998, Ch. 4. [19]J. Papapolymerou, J. C. Cheng, J. East, and L. P. B. Katehi, “A micromachined high-Q X-band resonator,” IEEE Microwave and Guided Wave Lett., vol. 7, No. 6, pp. 168—170, June 1997. [20]D. K. Cheng, “Field and Wave Electromagnetics,” Addison-Wesley, Reading, Mass., 1993, Ch. 10. [21]D. M. Pozar, “Microwave Engineering,” 2nd ed. New York: Wiley&Sons, Inc., 1998, Ch. 4. [22]HFSS 9.2, Ansoft Corporation, PA, USA. [23]王薔, 李國定, 龔克, “電磁場理論基礎,” 初版, 五南圖書出版股份有限公司, 2003, Ch. 9.
|