(3.236.82.241) 您好!臺灣時間:2021/04/13 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴志哲
研究生(外文):Chih Che Lai
論文名稱:增加植基於空腔耦合之寬頻微帶線垂直轉接之頻寬的方法
論文名稱(外文):Bandwidth Enhancement of Broad-Band Cavity-Coupled Microstrip Vertical Transitions
指導教授:李士修
指導教授(外文):Eric S. Li
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:65
中文關鍵詞:頻寬空腔耦合器耦合槽孔有限元素分析法微帶線殘段垂直轉接
外文關鍵詞:Bandwidthcavity-coupledcoupling slotsfinite- element methodtuning stubsverrical transitions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文裡描述了如何增加空腔耦合之寬頻微帶線垂直轉接之頻寬的方法。經由改變耦合槽孔結構以及微帶線残段結構,可以使得比例頻寬增加大約30%左右。其優點除了提供更多的頻寬之外,比起一般傳統中具有共同特徵所使用矩形槽孔耦合與四分之ㄧ波長微帶線残段的結構,這種改變耦合槽孔與微帶線残段的設計方法所能得到的好處就是,可以減少耦合槽孔與微帶線残段在縱向尺寸的長度。這樣的特性對於一個需要高元件密度之微波電路而言將頗有助益。有限元素分析法將用來執行本論文內所需要的數值模擬,主要是基於這種數值方法在立體結構上的精確度。此外,亦會探討使用矩形空腔耦合以及圓柱空腔耦合的垂直轉接。這些模擬結果均將以實驗量測的方法來應證其正確與否。在這裡所描述的設計將會呈現出較為寬頻與低介入損失的垂直轉接。
Techniques to increase the bandwidth of broad-band cavity-coupled microstrip vertical transitions are described in this thesis. By varying the configurations of coupling slots and tuning stubs of the vertical transitions, a more than 30% increase in bandwidth can be achieved. Besides the advantage of offering more bandwidth, another common feature of these designs is the size reduction in the longitudinal direction of the coupling slots and the tuning stubs in comparison with the rectangular coupling slots and the quarter-wavelength microstrip tuning stubs employed by the conventional designs. This characteristic is critical for modern microwave circuit designs requiring high density in circuit elements. The finite-element method was chosen to perform the required simulations for the proposed designs because of its accuracy for the structures described in this thesis. Both rectangular and circular cavity-coupled vertical transitions are under investigation. The validity of the simulation results has been assessed by measured data obtained from experiments. It demonstrates that the designs presented here can provide vary wide-band and low-insertion-loss vertical transitions.
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 動機與目標 1
1.2 章節概要 3

第二章 空腔耦合架構與分析 5
2.1 結構與設計 5
2.2 選擇數值計算法 9
2.3 頻譜解析 11
2.4 量測與校正 14
2.5 影響空腔耦合的參數 18

第三章 現有空腔結構設計 21
3.1 矩形空腔 21
3.2 圓柱空腔 27
3.3 最佳空腔的選擇 31

第四章 增加頻寬的槽孔設計 33
4.1 蝶形領結槽孔 33
4.1.1 矩形空腔、蝶形領結槽孔的設計 34
4.1.2 圓形空腔、蝶形領結槽孔的設計 38
4.2 扭曲H形槽孔 40
4.2.1 矩形空腔、H形槽孔的設計 41
4.2.2 圓形空腔、H形槽孔的設計 43
4.3 交錯矩形槽孔 45
4.4 最佳槽孔的選擇 47

第五章 設計微帶線殘段增加頻寬 50
5.1 步階狀殘段 50
5.2 放射狀殘段 54
5.3 最佳殘段的選擇 57

第六章 結論 60

參考文獻 63
[1]N. Herscovici and D. M. Pozar, “Full-wave analysis of aperture-coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 7, pp. 1108—1114, July 1991.
[2]N. L. VandenBerg and L. P. B. Katehi, “Broadband vertical interconnects using slot-coupled shielded microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 1, pp. 81—88, Jan. 1992.
[3]C. Chen, M. J. Tsai, and N. G. Alexopoulos, “Optimization of aperture transitions for multiport microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2457—2465, Dec. 1996.
[4]L. Zhu and K. Wu, “Ultrabroad-band vertical transition for multilayer integrated circuits,” IEEE Microwave Guided Wave Lett., vol. 9, no. 11, pp. 453—455, Nov. 1999.
[5]J. Sercu, N. Fache, F. Libbrecht, and P. Lagasse, “Mixed potential integral equation technique for hybrid microstrip-slotline multilayered circuits using a mixed rectangular-triangular mesh,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 5, pp. 1162—1172, May 1995.
[6]A. M. Tran and T. Itoh, “Analysis of microstrip lines coupled through an arbitrary shaped aperture in a thick common ground plane,” in Proc. IEEE-MTT Symp., pp. 819—822, Jan. 1993.
[7]M. Davidovitz, R. A. Sainati, and S. J. Fraasch, “A non-contact interconnection through an electrically thick ground plate common to two microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 4, pp. 753—759, April 1995.
[8]D. M. Pozar, “Analysis and design of cavity-coupled microstrip couplers and transitions,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 1034—1044, March 2003.
[9]P. R. Haddad and D. M. Pozar, “Characterisation of aperture coupled microstrip patch antenna with thick ground plane,” Electron. Lett., vol. 30, no. 14, pp. 1106—1107, July 1994.
[10]P. R. Haddad and D. M. Pozar, “Analysis of two aperture-coupled cavity-backed antennas,” IEEE Trans. Antennas Propagat., vol. 45, no. 12, pp. 1717—1726, Dec. 1997.
[11]E. S. Li, J. C. Cheng, and C. C. Lai, “Designs for broad-band microstrip vertical transitions using cavity couplers,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 464—472, January 2006.
[12]E. S. Li, J. C. Cheng, and C. C. Lai, “A hybrid MOM/FEM technique for modeling broadband cavity-coupled microstrip vertical transitions,” Proc. IEEE Int. Antennas Propagat. Symp., July 2006.
[13]Broad-band microstrip mixer design: The Butterfly Mixer, Hewlett-Packard, App. note no. 976, 1980.
[14]H. A. Atwater, “The design of the radial line stub: A useful microstrip circuit element,” Microwave J., pp. 149—156, Nov. 1985.
[15]P. H. Rao, V. F. Fusco, and R. Cahill, “Linearly polarized radial stub fed high performance wideband slot antenna,” Electron. Lett., vol. 37, no. 6, pp. 335—337, March 2001.
[16]RF, microwave and millimeter-wave coaxial connectors, adaptors, tools and accessories, M/A-COM, Catalog no. 1D1011D, 1997.
[17]Y. W. Jang, “Experimental characteristics of a printed open-slot antenna with reflector for PCS, DCS, and IMT-2000,” Microwave and Optical Tech. Lett., vol. 41, No. 5, pp. 348—350, June 2004.
[18]J. C. Cheng, “Theoretical modeling of MMIC’s using wavelets parallel computing and hybrid MOM/FEM technique,” Ph. D. dissertation, the University of Michigan, 1998, Ch. 4.
[19]J. Papapolymerou, J. C. Cheng, J. East, and L. P. B. Katehi, “A micromachined high-Q X-band resonator,” IEEE Microwave and Guided Wave Lett., vol. 7, No. 6, pp. 168—170, June 1997.
[20]D. K. Cheng, “Field and Wave Electromagnetics,” Addison-Wesley, Reading, Mass., 1993, Ch. 10.
[21]D. M. Pozar, “Microwave Engineering,” 2nd ed. New York: Wiley&Sons, Inc., 1998, Ch. 4.
[22]HFSS 9.2, Ansoft Corporation, PA, USA.
[23]王薔, 李國定, 龔克, “電磁場理論基礎,” 初版, 五南圖書出版股份有限公司, 2003, Ch. 9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 5. 劉江彬,孫遠釗,耿筠,美國法院對醫療用生物科技產品專利之可實施性的見解,智慧財產權月刊第二十六期,頁3-21,九十年二月
2. 4. 陳敏慧,複效性幹細胞與多效性幹細胞的應用,生物醫學報導第五期,頁10-14,九十年一月
3. 3. 李瑞全,胚胎基因實驗之倫理爭議,應用倫理研究通訊第十七期,頁1-8,九十年一月
4. 2. 劉銀良、李樺佩,由美國及國際法之觀點談生物技術發明的可專利性及其道德限制,東吳法律學報第十二卷第二期,頁327-343,八十九年十月
5. 1. 李瑞全,胚胎的道德地位,應用倫理研究通訊第十二期,頁2-5,八十八年十一月
6. 6. 蔡明誠,基因技術與專利發明問題(上),萬國法律第118期,頁45-57,2001年8月
7. 7. 蔡明誠,基因技術與專利發明問題(下),萬國法律第119期,頁64-72,2001年10月
8. 8. 陳英鈐,人類幹細胞研究的法議題,政大法學評論第六十七期,頁1-58,九十年九月
9. 10. 黃三榮,ES細胞•EG細胞 vs.法律,萬國法律第120期,頁63-70,2001年12月
10. 11. 孫文玲,談美國生技專利法制與新近WARF胚胎幹細胞相關專利授權,智慧財產權管理31期,頁47-54,九十年十二月
11. 12. 陳仲嶙、蘇夏曦,前胚胎地位之研究-以製造胚胎提供幹細胞研究為例,生物科技與法律研究通訊第十三卷,頁37-66,2002年1月
12. 13. 陳英鈐,德國對胚胎幹細胞研究的管制:幹細胞法的意義,應用倫理研究通訊第二十二期,頁47-57,九十一年四月
13. 14. 李森堙,談生技專利之延展性申請專利範圍,科技法律透析第14卷第5期,頁44-61,2002年5月
14. 17. 李素華,德國胚胎幹細胞法(草案)介紹與淺析,科技法律透析第14卷第7期,頁22-27,2002年7月
15. 19. 謝祖松,從專利調和化的觀點評析我國新修專利法可專利性要件之規範,臺灣本土法學雜誌第四十四期,頁19-38,2003年3月
 
系統版面圖檔 系統版面圖檔