|
參考文獻 [1]V. Zue, ”Speech in Oxygen”, Technical Report, Computer Science Lab, MIT, Cambridge, MA, USA, May, 2001 [2]C. J. Leggester and P. C. Woodland. ”Maximum likelihood linear regression for speaker adaptation of continous density HMMs”. Computer Speech and Language, 171-186, 1995 [3]J. H. Holmes, N. C. Sedgwick, ”Noise compensation for speech recognition using probabilistic models”. ICASSP,1986 [4]D. H. Klatt, ”A digital filterbank for spectral matching”. Processding of ICASSP, 1986 [5]A. P. Varga and R. K. Moore. ”Hidden Markov model decomposition of speech and noise”. Proceedings of ICASSP, 845-848, 1990 [6]A. D. Berstein and I. D. Shallom. ”An hypothesized Wiener filtering approach to noisy speech recognition”. Proceedings of ICASSP, 913-916, 1991 [7]V. L. Beattie and S. J. Yung. ”Hidden Markov model state-based cepstral noise compensation”. Proceeding of ICSLP, 519-522, 1992 [8]A. Acero, L, Deng, T. Jristjansson, and J. Zhang. ”HMM adaptation using vector Taylorseries for noisy speech recognition”. Proceedings of ICSLP, 869-872, 2000 [9]J. L. Gauiain and C. H. Lee, ”Maximun a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains”, IEEE Trans. on Speech and Audio Processing, 1994 [10]C. J. Leggester and P. C. Woodland. ”Maximum likelihood linear regression for speaker adaptation of continous density HMMs”. Computer Speech and Language, 171-186, 1995 [11]A. Sankar , and C. -H. Lee. ”A maximum-likelihood approach to stochastic matching for robust speech recognition”. IEEE Trans. Acoust. Speech signal process. 190-202, 1996 [12]C. –H. Lee. ”On stochastic feature and model compensation approaches to robust speech recognition”. Speech Communication 25:29-47, 1998 [13]P. J. Moreno, B. Raj and R. M. Stern. ”Data-driven environmental compensation for speech recognition: A unified approach”. Speech Communication 24:267-285, 1998 [14]M. J. F. Gales and S. J. Young. ”Cepstral parameter compensation for HMM recognition in noise”. Speech Communication 12:231-239, 1993 [15]M. J. F. Gales and S. J. Young. ”Robust speech recognition in additive and convolutional noise using parallel model combination”. Computer Speech and Language 9:289-307, 1995 [16]M. J. F. Gales and S. J. Young. ”A fast and flexible implementation of parallel model combination”. Proceeding of ICASSP, 131-136, 1995 [17]Y. C. Tam, B. Mak. ”Optimization of sub-band weights using simulated noisy speech in multi-band speech recognition”. Proceedings of ICSLP, 313-316, 2000 [18]A. acero. ”Acoustical and environmental rebustned in automatic speech recognition”. Kluwer Academic Press.Boston, MA. 1991 [19]ITU-T Recommendation G.729-Annex B:A silence compression seem for G.729 optimized for terminals conforming to Recommendation V.70 [20]Y. Ephraim and H. L. VanTrees. ”Asignal Subspace Approach for Speech Enhancement”, IEEE Transactions. on Speech and Audio Processing, 1995 [21]S. F. Boll. ”Suppression of acoustic noise in speech using spectral subtraction”. IEEE Trans. Acoust. Speech, Signal Process. vol27, pp. 113-120, apr. 1979 [22]P. Lockwood and J. Boudy. ”Experiments with a Nonlinear Spectral Subtractor(NSS), Hidden Makov Models and Projection, for Robust Speech Recognition in Cars”, Proceeding of Eurospeech, 1991 [23]Atal. B. S. ”Effectiveness of linear prediction characteristics of speech wave for a utomatic speaker identification and verification”. J. Acoust. Soc, AM. 55(6), 1304- 1312, 1974. [24]S. Tiberewala and H. Hermansky. ”Multiband and adaptation approaches to robust speech recognition ”. in Proc. Eurospeech97, 1997, pp. 107-110 [25]O. Viikki and K. Laurila. ”Noise robust HMM-based speech recognition using segmental cepstral feature vector normalization”. in ESCA NATO Workshop Robust Speech Recognition Unknown Communication Channels, Pont-a-Mousson, France, 1997, pp. 107-110 [26]S. Yoshizawa, N. Hayasaka, W. Naoya, and Y. Miyanaga. ”Cepstral Gain Normalization for Noise Robust Speech Recognition”. Proceedings of ICASSP 2004 [27]H. Hermansky and N. Morgan. ”RASTA processing of speech”. IEEE Transactions on Speech and Audio Processing, 2, 578-589, 1994 [28]F. Hilger and H. Ney. ”Quantile Based Histogram Equalization for Noise Robust Speech Recognition”. Proceedings of Eurospeech, 2001 [29]H. Y. Jung and S. Y. Lee. ”On the Temporal Decorrelation of feature Parameters for noise Robust Speech Recognition, IEEE 2000 [30]C. Nadeu, D. Macho, and J. Hernando. ”Time and frequency filtering of filter-bank energies for robust HMM speech recognition”. Speech Communication 2001 [31]N. Kanedera, T. Aria, H. Hermansky and M. Pavel. ”On The Importance of Various Modulation Frequencies for Speech Recognition”. Proceedings of Eurospeech, 1997 [32]F. Bernard and H. U. Reinhold. ”A Compartive Study of Linear Feature Reansformation techniques for Automatic Speech Recognition”. Proceedings of ICSLP 1996 [33]B. Elio and N. Climent. ”Feature Decorrelation Methods in Speech Recognition”. A Comparative Study [34]J. W. Hung and L. S. Lee. ”Comparative Analysis for Data-Driven Temporal Filters Obtained Via Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA) In Speech Recognition”. Proceedings of Eurospeech 2001 [35]S. V. Vuuren and H. Hermansky. ”Data-Driven Design of RASTA-Like Filters”. Proceedings of ICSLP 1996 [36]L. Markus and H. U. Reinhold. ”LDA Derived Cepstral Trajectory Filters in Adverse Environmental Conditions”. Proceedings of ICASSP 2000 [37]J. W. Hung and L. S. Lee. ”Optimization of Temporal Filters for Constructing Robust Features in Speech Recognition”. IEEE Transactions. on Speech and Audio Processing 2004
|