跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇育民
研究生(外文):Yu.Mimg.Su
論文名稱:以高分子製備功能性磁性奈米顆粒及其於分析磁泳應用
論文名稱(外文):Preparation of Functional Nanomagnetic Particles usingPolymeric Method for Analytical Magnetapheresis
指導教授:傅傳博
指導教授(外文):C.B.F
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:133
中文關鍵詞:磁性奈米顆粒
外文關鍵詞:Nanomagnetic Particles
相關次數:
  • 被引用被引用:2
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本論文係關於製備功能性磁性粒子( functional magnetic particles )並結合分析磁泳
技術( analytical magnetapheresis )做生化分離上之應用研究。前者主要利用化學共沉
澱方法( co-precipitating )製備磁性粒子,再對磁性粒子以高分子修飾粒子表面,所修
飾磁性粒子表面之官能基有NH2、COOH,最後採用穿透式電子顯微鏡( transmission
electron microscope;TEM )、掃描式電子顯微鏡( scanning electron microscope;SEM )、
粒徑分析儀( photon correlation spectroscopy;PCS )、原子力顯微鏡( atomic force
microscope;AFM )、超導量干涉磁量儀( superconducting quantum interference device
(SQUID) magnetometor)、X射線繞射儀( x-ray diffractometer;XRD )、傅立葉轉換紅
外線光譜儀( Fourier transform infrared instrumentents;FT-IR )、紫外光/可見光
( UV-VIS )鑑定。本研究成功製備40 ± 3 nm、100 ± 8 nm 及300 ± 14 nm之Fe3O4粒子。
磁性粒子表面經有機物質修飾粒子表面後粒徑為80 ± 5 nm、200 ± 15 nm、420 ± 38
nm、860 ± 52 nm及2000 ± 112 nm。
接下來,將鏈黴抗生素蛋白(Streptavidin)或免疫球蛋白(IgG)固定化在四氧化三鐵/
高分子磁性載體上,再將生物素(d-Biotin)或蛋白質A(Protein A)固定在二氧化矽( SiO2 )
載體上,結合分析磁泳技術( analytical magnetapheresis )做簡單生化分離上之測試研
究。探討磁性載體種類、流速、及顆粒數目在分離上的可能應用。
Analytical magnetapheresis has become a useful technique for analyzing magnetically
susceptible particles. Magnetic particles ( Fe3O4 ) were prepared by co-precipitating.
The surface modifications of Fe3O4 were studied with polymer and NH2, COOH.
Transmission electron microscopy ( TEM ) , photon correlation spectroscopy ( PCS ) ,
atomic force microscope ( AFM ) , x-ray diffraction ( XRD ) , superconducting quantum
interference device (SQUID) magnetometer , fourier transform infrared instruments
( FT-IR ) and UV-VIS were used for analysis. The sizes of magnetic nanoparticles were :
Fe3O4 = 40 ± 3 nm、100 ± 8 nm and 300 ± 14 nm , and Fe3O4-polymer= 80 ± 5 nm、200 ± 15
nm、420 ± 38 nm、860 ± 52 nm and 2000 ± 112 nm。
Streptavidin or IgG was bound onto Fe3O4-polymer particles via carbodiimide
activation. Biotin or IgG was covalently bound SiO2 particles, and applied to magnetic
carriers for bioseparation in analytical magnetapheresis. We studied experimental
parameters of magnetic particles、flowrate and particles number for analytical
magnetapheresis.
中文摘要.................................................................................................................... I
英文摘要................................................................................................................... II
目錄……………………………………………………………………………………...III
表目錄…………………………………………………………………………………VI
圖目錄…………………………………………………………………………….........IX
第一章緒論...........................................................................................................1
1.1 前言.................................................................................................................... 1
1.2 研究動機............................................................................................................ 3
1.3 奈米材料分類與製備......................................................................................... 4
1.4 奈米材料表面修飾............................................................................................. 7
1.5 功能性磁性奈米材料....................................................................................... 10
1.5.1 氧化鐵之特性........................................................................................ 10
1.5.2 磁性材料應用........................................................................................ 11
1.6 磁性分析技術之原理....................................................................................... 14
第二章理論.........................................................................................................16
2.1 磁性相關理論.................................................................................................. 16
2.1.1 磁化率之觀念與換算............................................................................ 20
2.1.2 磁化率之量測........................................................................................ 23
2.1.3 超導量子干涉磁量儀測量法( SQUID magnetometer ) ......................... 23
2.2 高分子分散聚合的發展與原理....................................................................... 29
2.2.1 高分子合成........................................................................................... 29
2.2.2 分散聚合法........................................................................................... 23
2.3免疫分析之原理............................................................................................... 34
2.3.1 非專一性免疫........................................................................................ 34
2.3.2 專一性免疫反應.................................................................................... 36
2.3.3 抗體與抗原之結合力............................................................................ 37
2.4分析磁泳技術之原理........................................................................................ 40
2.4.1磁場( magnetic field ) ............................................................................. 40
2.4.2分離槽( separation channel )................................................................... 47
2.4.3多管注射幫浦( syringe pump ) ............................................................... 47
第三章功能性磁性粒子之製備............................................................................48
3.1 前言.................................................................................................................. 48
3.2 實驗藥品與器材.............................................................................................. 50
3.2.1 實驗藥品............................................................................................... 50
3.2.2 儀器....................................................................................................... 51
3.2.3 材料....................................................................................................... 51
3.2.4 自製磁性顆粒送測後之計算處理......................................................... 51
3.3 實驗步驟.......................................................................................................... 53
3.3.1 磁性奈米粒子之製備............................................................................ 53
3.3.2 無孔性高分子顆粒製備........................................................................ 53
3.3.3 修飾磁性奈米粒子之製備.................................................................... 53
3.4 特性分析.......................................................................................................... 57
3.4.1 穿透式電子顯微鏡( TEM )分析............................................................ 57
3.4.2 掃描式電子顯微鏡( SEM )分析............................................................ 57
3.4.3 原子力顯微鏡( AFM )分析................................................................... 57
3.4.4 雷射粒徑儀分析.................................................................................... 57
3.4.5 X射線繞射儀( XRD )分析.................................................................... 57
3.4.6 傅立葉轉換紅外線光譜儀( FTIR )分析................................................ 57
3.4.7 紫外光/可見光光譜儀( UV-VIS )分析.................................................. 57
3.5 實驗結果.......................................................................................................... 58
3.5.1 磁性奈米粒子大小及結構.................................................................... 58
3.5.2 修飾磁性奈米粒子表面........................................................................ 61
3.5.3 磁性....................................................................................................... 64
3.5.4 磁性次微米粒子大小及結構................................................................ 69
3.5.5 粒子對紫外光/可見光( UV-VIS )吸收探討.......................................... 74
第四章鏈黴抗生素蛋白(Streptavidin) 及生物素(d-Biotin)在磁性分離技術上
的應用.......................................................................................................76
4.1 前言.................................................................................................................. 76
4.2 實驗藥品與器材.............................................................................................. 78
4.2.1 實驗藥品............................................................................................... 78
4.2.2 儀器....................................................................................................... 78
4.3 實驗步驟.......................................................................................................... 79
4.3.1 磷酸鹽緩衝溶液(PBS)之配製............................................................... 79
4.3.2 血球計數盤使用方法............................................................................ 80
4.3.3 樣品配製............................................................................................... 81
4.4 實驗結果.......................................................................................................... 86
4.4.1 不同磁性顆粒大小對鍵結鏈黴抗生素蛋白(Streptavidin)之影響................ 86
4.4.2 流速之影響................................................................................................... 86
4.4.3注入不同數目二氧化矽鍵結生物素(d-Biotin)顆粒數的影響....................... 86
4.4.4磁珠固定鏈黴抗生素蛋白(Streptavidin)添加NHS之影響........................... 94
第五章免疫球蛋白(IgG)及蛋白質A(Protein A)在磁性分離技術上的應用....... 102
5.1 前言................................................................................................................ 102
5.2 實驗藥品與器材............................................................................................ 103
5.2.1 實驗藥品............................................................................................. 103
5.2.2 儀器..................................................................................................... 103
5.3 實驗步驟........................................................................................................ 104
5.3.1磷酸鹽緩衝溶液(PBS)之配製.............................................................. 104
5.3.2 樣品配製............................................................................................. 105
5.4 實驗結果.........................................................................................................110
5.4.1不同磁性顆粒大小對鍵結免疫球蛋白(anti-rabbit IgG)之影響....................110
5.4.2 流速之影響..................................................................................................110
5.4.3 顆粒數之影響..............................................................................................110
5.4.4磁珠固定免疫球蛋白(anti-rabbit IgG)添加NHS之影響.............................119
第六章結論與未來展望...................................................................................... 127
參考文獻................................................................................................................ 129
林鴻明, 林中魁,「奈米科技應用研究與展望」,工業材料,第179期,2001年
11月
2. 楊日昌, 蔡嬪嬪,「奈米科技簡介」,經濟情勢暨評論,第8卷,第1期,2002年6

3. Fuh, C. B., Lin, L.Y., Lai, M.H., “Analytical magnetapheresis of magnetically
susceptible particle” Journal of Chromatography A, 874:pp 131-142(2000).
4. Mitchell, R., Bitton, G., Oberteuffer, J. A., Sep. Purif. Methods, Vol.4, pp.
267-303(1975).
5. Šafaøík, I., Šafaøíková, M., in: Häfeli, U., Schütt, W., Teller, J., Zborowski,
M.,(Eds.), Scientific and Clinical Applications of Magnetic Carriers, Plenum
Press, New York, pp.323(1997).
6. Huang, S. H. ; Liao, M. H. ; Chen, D. H. “Direct Binding and Characterization of
Lipase onto Magnetic Nanoparticles” Biotechnol. Prog. 19, 1095-1100, 2003
7. S. Iijima, “Helical microtubules of graphitic carbon ”Nature, 354, 56 (1991).
8. Chen, K. L., Chiang, A. S. T., Tsao, H. K. J. Nanoparticle Res. 2001, 3, 119.
9. Naik, S. P., Chen, J. C., Chiang, A. S. T. “Synthesis of silicalite nanocrystals via the
steaming of surfactant protected precursors”.Microporous Mesoporous Mat. 2002,
54,293.
10. Sen, D., Deb, P., Mazumder, S., Basumallick,A. “Microstructural investigations of
ferrite nanoparticles prepared by nonaqueous precipitation route” Mater. Res. Bull.
2000, 35, 1243.
11. Veiga, V., Ryan, D. H., Sourty, E., Llanes, F.,marchessault, R. H. “Formation and
characterization of superparamagnetic cross-linked high amylose starch” Carbohydrate
Polymers 2000, 42, 353.
12. Banerjee, S., Roy, S., Chen, J. W.,Chakravorty, D. “Magnetic properties of
oxide-coated iron nanoparticles synthesized by electrodeposition” J. Magn. Magn.
Mater. 2000, 219, 45.
13. 莊Zhang, Y. ; Kohler, N. ; Zhang, M. “Surface modification of superparamagnetic
magnetite nanoparticles and their intracellular uptake” Biomaterials 23, 1553–1561,2002
14, 563-574,2003萬發編撰,「超微粒子理論應用」,復漢出版社,台南,1995
15. Soshin Chikazumi 著,張煦、李學養合譯,「磁性物理學」,聯經出版社,台北,
第3-180 頁,1982
16. Riew, C. K. ; Rowe, E. H. ; Siebert, A. R. “Advances in Chemistry Series ” Vol.
154( Toughness and Brittleness Plast., Symp. 1974 ), pp. 326, 1976
17. Yen, F. S. ; Chen, W. C. ; Yang, J. M. , Hong, C. T. “Crystallite Size Variations of
Nanosized Fe2O3 Powders during γ- to α-Phase” NANO LETTERS Vol. 2, No. 3,
245-252,2002
18. 殷嘉琳,「分析磁泳在免疫分析上的應用探討」,碩士論文,朝陽科技大學應用
化學系,台中,2002
19. Zborowski, M. ; Fuh, C. B. ; Green, R. ; Sun, L. ; Chalmers, J. J. “Analytical
Magnetapheresis of Ferritin-Labeled Lymphocytes” Anal. Chem. 67, 3702-3712, 1995
20. 陳炫仰,「磁性分離技術之探討-磁場分佈之量測與分離技術之應用」,碩士論
文,朝陽科技大學應用化學系,台中
21. Fuh, C. B. ; Su, Y. S. ; Tsai, H. Y. “Determination of magnetic susceptibility of
various ion-labeled red blood cells by means of analytical magnetapheresis” Journal
of Chromatography A, 1027, 289–296, 2004
22. http://images.google.com.tw/imgres?imgurl=http://www.geo.umn.edu/orgs/irm/hg2m/
hg2m_b/Image10.gif&imgrefurl=http://www.geo.umn.edu/orgs/irm/hg2m/hg2m_b/hg
2m_b.html&h=567&w=528&sz=7&tbnid=tNxW4Eia294J:&tbnh=131&tbnw=121&h
l=zh-TW&start=9&prev=/images%3Fq%3Dhysteresis%2Bloop%26svnum%3D10%2
6hl%3Dzh-TW%26lr%3D%26sa%3DN
23. http://64.233.179.104/search?q=cache:pyjcaNV7YrYJ:www.bud.org.tw/answer/0306/
030616.htm+%E5%B1%85%E7%A6%AE%E6%BA%AB%E5%BA%A6&hl=zh-T
W
24. http://psroc.phys.ntu.edu.tw/bimonth/v22/552.doc
25. Olga, A. ; Aviva, T. H. ; Alberto, G. ; Dan, G. “Folate-Targeted PEG as a Potential
Carrier for Carboplatin Analogs Synthesis and in Vitro Studies” Bioconjugate Chem.
Nam, J. M. ; Thaxton, C. S. , Mirkin, C. A. “Nanoparticle-Based Bio-Bar Codes for
the Ultrasensitive Detection of Proteins” Science 301,1884-1886
27. Bergemann, C. ; Schulte, D. M. ; Oster, J. ; Brassard, L. ; Lübbe A. S. “Magnetic
ion-exchange nano- and microparticles for medical,biological applications” J.
Magnetism and Magnetic Materials 194,45-52,1999
28. Louis, X. ; Guido, K. ; Andres, R. Y. “Antibody-Magnetite Nanoparticles:In Vitro
Characterization of a Potential Tumor-Specific Contrast Agent for Magnetic
Resonance Imaging” Bioconjugate Chem.4,347-352,1993
29. Bucak, S. ; Jones, D. A. ; Laibins, P. E. ; Hatton, T. A. “Protein Separations Using
Colloidal Magnetic Nanoparticles” Biotechnol. Prog.19,477-484,2003
30. 傅昭銘、王昱豐,「奈米磁顆粒之放射性標化及應用簡介」,物理雙月刊,第25
卷,第3期,第1-4頁,2003,6月
31. 魏明芬,「磁性金屬氧化物奈米粒子的合成與鑑定」,碩士論文,國立中正大學
化學系,嘉義,2002
32. 行政院環境保護署,http://www.epa.gov.tw/welcome.html
33. Evans, C. H.; Russel, A. P.; Westcott, V. C., Journal of Chromatography,Vol.351,
pp.409-415(1986).
34. Evans, C.H., Tew, W.P., Science, Vol.213, August 7, pp.653-654 (1981).
35. Lea, T. ,Smeland, E., Funderud, S., Vartdal, F., Davies, C., Beiske, K.,Ugelstad,
“ Characterization of human mononuclear cells after positive selection with I I
mmunomagnetic particle” Scand. Journal Immunol, Vol. 23,pp. 509-519(1986).
36. Gaudernack, G., Leivestad. T., Ugelstad, J., Thorsby, E., “Isolation of pure
functionally acetive CD8+ T cells” Journal Immunol Methods, Vol.
90,pp.179-187(1986).
37. Riew, C. ; Rowe, E. ; Siebert, A. “Advances in Chemistry Series ” Vol.
154( Toughness and Brittleness Plast., Symp. 1974 ), pp. 326, 1976
38. mag-net.ee.umist.ac.uk/ articles/a3.html
39. www.amorphous.com.cn/ en/product/index.asp?c_id=82
40. http://herkules.oulu.fi/isbn9514266064/html/graphic22.png
41. www.mtm.kuleuven.ac.be/ Research/SURF/webwr.htm
42. Harris, L. A. “Polymer Stabilized Magnetite Nanoparticles and Poly(propylene oxide)
Modified S132
莊萬發編撰,「超微粒子理論應用」,復漢出版社,台南,1995
44. 賴建志,「磁性分離技術之應用-測定物質磁化率之探討」,碩士論文,朝陽科技
大學應用化學系,台中,2000
45. 楊鴻昌,「超導量子干涉磁量儀」,科儀新知,第12 卷,第6 期,第72-79 頁,
1991
46. Baynes、Dominczak著,潘淑芬譯,醫學生物化學,藝軒圖書出版社,台北,2001
47. www.ch.tum.de/weller/popularscience.htm
48. 王宗興,「分子辨識與感測器」,台灣大學應用化學系,2001 ,
http://66.102.7.104/search?q=cache:alAcGwdIP9kJ:www.chemedu.ch.ntu.edu.tw/lect
ure/molecular/2.htm+%E7%8E%8B%E5%AE%97%E8%88%88&hl=zh-TW
49. Kang, Y. S. ; Risbud, S. ; Raboh, J. F. , Stroeve, P. “Synthesis and Characterization of
Nanometer-Size Fe3O4 andγ-Fe2O3 Particles” Chem. Mater.8,2209-2211,1996
50. Lu, Y. ; Yin, Y. ; Mayer, B. T. , Xia, Y. “Modifying the surface properties of
superparamagnetic iron oxide nanoparticles through a Sol-Gel approach” NANO
LETTERS Vol. 2, No. 3, 183-186,2002
51. Mikhaylova, M. ; Kim, D. K. “BSA immobilization on Amine-Functionalized
Superparamagnetic Iron Oxide Nanoparticles” Chem. Mater,16,2344-2354,2004
52. Sun, Y. ; Duan, L. ; Guo, Z. ; DuanMu, Y. ; Ma, M. ; Xu, L. ; Zhang, Y. ; Gu, N. “An
improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles
for possible biological application” J. Magnetism and Magnetic Materials
285,65-70,2005
53. Ma, M. ; Zhang, Y. ; Yu, W. ; Shen, H. Y. ; Zhang, H. Q. ; Gu, N. “Preparation and
characterization of magnetite nanoparticles coated by amion silane” Colloids and
Surfaces A:Physicochem.Eng.Aspects 212, 219-226, 2003
54. Pretsch, E. ; Buhlmann, P. ; Affolter, C. “Structure Determination of Organic
Compounds” Springer , 2000
55. Zaitsev, V. S. ; Filimonov, D. S. ; Presnyakov, I. A. ; Gambino, R. J. ; Chu,
B.“Physical and chemical properties of magnetite and magnetite-polymer
nanoparticles and their colloidal dispersions” J. Colloid Interface Sci. 212: 49-57,
1999
56. Chen, D. H. ; Wu, S. H. “Synthesis of nickel nanoparticles in water-in-oil
microemulsions” Chem. Mater. 12: 1354-1360, 2000
57. Shafi, M. ; Gedanken, A. ; Prozorov, R. ; Balogh, J. “Sonochemical preparation and
size-dependent properties of nanostructured CoFe2O4 particles” Chem. Mater. 10:
3445-3450, 1998
58. http://64.233.179.104/search?q=cache:lTZ1KTUtCfoJ:elearning.stut.edu.tw/m_factur
e/Nanotech/Web/ch7.htm+%E4%B9%85%E4%BF%9D%E7%90%86%E8%AB%96
&hl=zh-TW
59. Roitt, I., Brostoff, J., Male, D., Immunology, 2nd, ed.Gower Medical Publishing,
NewYork(1989).
60. Golub, ES., Green, DR., Immunology:A Synthesis, 2nd, ed.Sinauer Associates,Inc.,
Sunderland,MA (1991).
61. 陳吉平,免疫學,睿煜出版社,屏東縣,第3-6 頁(1993)。
62. Chu FS. “Immunoassays for analysis of mycotoxins.” Journal Food
Sci ,47(7):pp562-569 (1984).
63. Hofmann, K., Titus, G., Montibeller, J. A., and Finn, F. M. “Avidin binding of
carboxyl-substituted biotin and analogues” Biochemistry 21: pp 978-984(1982).
64. Ven den Pol, A. N., “Colloidal gold and biotin-avidin conjugates as ultrastructural
markers for neural antigens” Q. J. Exp. Physiol. 69(1): pp 1-33(1984).
65. 黃淑娟. 奈米粉體製程技術. 化工資訊2004年4月34-38
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top