|
目錄 第一部分 卡唑化合物的合成與電化學研究 第一章 前言 1-1 三苯胺化合物………………………………..........……... 1-2 Carbazole化合物…………………………….…..………. 第二章 實驗 2-1 藥品……………………………………………………… 2-2 Carbazole衍生物的合成製備…………………….…..… (1) 9-phenylcarbazole, (1)………..……………………….… (2) 3,6-dibromo-9-phenylcarbazole, (2)….………………… (3) 3,6-di-tert-butyl-9-phenylcarbazole, (3)….………..…… (4) 3,6-dinitro-9-phenylcarbazole, (4)……………………… (5) 9-phenylcarbazole-3,6-diamine, (5)…..………………… (6) 9-(4-methoxyphenyl)carbazole, (6)……………...……… (7) 9-(4-methoxyphenyl)-3,6-dinitrocarbazole, (7)………… (8) 9-(4-methoxyphenyl)-carbazole-3,6-diamine, (8).……… (9) 9-p-tolylcarbazole, (9)…………………………...……… (10) 3,6-dibromo-9-p-tolylcarbazole, (10)………….………… (11) 3,6-di-t-butyl-9-p-tolylcarbazole, (11)………………...… (12) 9-(4-nitrophenyl)carbazole, (12)………….…………..… (13) 4-(carbazol-9-yl)benzenamine, (13)…….……………..… (14) 3,6-di-t-butyl-9-(4-t-butylphenyl)carbazole, (14)……….. (15) 9-(4-methoxyphenyl)-3-(9-(4-methoxyphenyl) carbazol-3-yl)carbazole, (15)……………………..…...… (16) 9-phenyl-3-(9-phenylcarbazol-3-yl)carbazole, (16)…..… 第三章 Carbazoles的電化學及光譜電化學研究 3-1 Carbazole的衍生物……………………...……………… (1) 9-phenylcarbazole, (1)………..……………………….… (2) 3,6-dibromo-9-phenylcarbazole, (2)….………………… (3) 3,6-di-t-butyl-9-phenylcarbazole, (3)….…………..…… (4) 3,6-dinitro-9-phenylcarbazole, (4)……………………… (5) 9-phenylcarbazole-3,6-diamine, (5)…..………………… (6) 9-(4-methoxyphenyl)carbazole, (6)……………...……… (7) 9-(4-methoxyphenyl)-3,6-dinitrocarbazole, (7)………… (8) 9-(4-methoxyphenyl)-carbazole-3,6-diamine, (8).……… (9) 9-p-tolylcarbazole, (9)…………………………...……… (10) 3,6-dibromo-9-p-tolylcarbazole, (10)………….………… (11) 3,6-di-t-butyl-9-p-tolylcarbazole, (11)…………...……… (12) 9-(4-nitrophenyl)carbazole, (12)………….…………..… (13) 4-(carbazol-9-yl)benzenamine, (13)…….……………..… (14) 3,6-di-tert-butyl-9-(4-tert-butylphenyl)carbazole, (14).… (15) 9-(4-methoxyphenyl)-3-(9-(4-methoxyphenyl) carbazol-3-yl)carbazole, (15)……………………..…...… (16) 9-phenyl-3-(9-phenylcarbazol-3-yl)carbazole, (16)…..… 第四章 結論………………………………………………..
第二部分 樹枝狀卡唑化合物的合成與電化學研究 第五章 前言 5-1 有機發光元件…………………………………………… 5-2 價間電子傳導(Intervalence charge transfer, IVCT)….... 5-3 研究目的………………………………………………… 第六章 實驗 6-1 藥品……………………………………………………… 6-2 Carbazole樹枝狀衍生物合成……………….………..… (a)N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9-phenyl-9H- carbazole-3,6-diamine……………………..………………
(b)9-phenyl-N3,N3,N6,N6-tetrap-tolyl-9H-carbazole-3,6- diamine………………………………………………….. (c)N3,N3,N6,N6,9-pentaphenyl-9H-carbazole-3,6-diamine…..... (d)N3,N3,N6,N6-tetrakis(4-nitrophenyl)-9-phenyl-9H-carbazole -3,6-diamine……………………………………………….. (g)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetrakis(4-nitrophenyl) -9H-carbazole-3,6-diamine………………………………... (e)N3,N3,N6,N6,9-pentakis(4-methoxyphenyl)-9H-carbazole-3, 6-diamine………………………………………………….. (f)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetraphenyl-9H- carbazole-3,6-diamine……………………………………..
第七章 樹枝狀carbazoles的電化學及光譜電化學研究 7-1 Carbazole的樹枝狀衍生物…………………………..…. (a)N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9-phenyl-9H- carbazole-3,6-diamine……………………..……………… (b)9-phenyl-N3,N3,N6,N6-tetrap-tolyl-9H-carbazole-3,6- diamine…………………………….…………………….. (c)N3,N3,N6,N6,9-pentaphenyl-9H-carbazole-3,6-diamine…..... (d)N3,N3,N6,N6-tetrakis(4-nitrophenyl)-9-phenyl-9H-carbazole -3,6-diamine……………………………………………….. (e)N3,N3,N6,N6,9-pentakis(4-methoxyphenyl)-9H-carbazole-3, 6-diamine………………………………………………….. (f) 9-(4-methoxyphenyl)-N3,N3,N6,N6-tetra-p-tolyl-9H- carbazole-3,6-diamine….…………………………………. (g)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetraphenyl-9H- carbazole-3,6-diamine…………………………………….. (h)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetrakis(4-nitrophenyl) -9H-carbazole-3,6-diamine………………………………... 第八章 結論……………………………………………….. 參考文獻…………………………………………….....................
圖目錄 第一部分 卡唑化合物的合成與電化學研究 Scheme 1-1-1 The electrochemical dimerization of TPA…………. Scheme 1-1-2 The electrochemical cyclization reaction………….. Scheme 1-2-1 The ECE mechanism of carbazole……….………... Fig. 3-1-1 Cyclic voltammograms of 1 mM compound 1 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE.………...…………. Scheme 3-1-1 The electrochemical oxidation of 1………………... Fig. 3-1-2 Spectral changes of compound 1 during the first oxidation at +1.10 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b)+1.10 V, 1﹔(c)3﹔(d)5﹔(e)7﹔(f)9﹔(g)11﹔(h)13﹔(i)16 min…...... Fig. 3-1-3 Spectral changes of compound 1 during the second oxidation at +1.16V in CH3CN containing 0.2 M TBAP. (a) +1.10 V, 16 min﹔(b) +1.16V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7﹔(i)12 min… Fig. 3-1-4 Spectral changes of compound 1 during the reduction recovery procedure at applied potential back to 0.00V in CH3CN containing 0.2 M TBAP. (a)+1.61 V, 1 min﹔(b)0.00 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7 min……………………… Fig. 3-1-5 Spectral changes of compound 1 during the first oxidation at +1.24 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b)+1.24V, 3﹔(c)6﹔(d)9﹔(e)12﹔(f)15 min…………………………... Fig. 3-1-6 Spectral changes of compound 1 during the second oxidation at +1.34 V in CH3CN containing 0.2 M TBAP. (a)1.24 V, 15 min﹔(b)+1.34 V, 3﹔(c)6 min………………………………………………... Fig. 3-1-7 Cyclic voltammograms of 1 mM compound 2 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-8 Spectral changes of compound 2 during the first electron oxidation at +1.30 V in CH3CN containing 0.2 M TBAP. (a) 0.00 V, 0 min﹔(b) +1.30V, 0.5﹔(c)1.5﹔(d)2﹔(e)2.5﹔(f)3 min…… Fig.3-1-9 Cyclic voltammograms of 1 mM compound 3 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-10 Spectral changes of compound 3 during the first electron oxidation at +1.11 V in CH3CN containing 0.2 M TBAP. (a)0.00 V 0 min﹔(b) +1.11 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4 min………………………….……….. Fig. 3-1-11 Cyclic voltammograms of 1 mM compound 4 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-12 Cyclic voltammograms of 1 mM compound 5 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-13 Cyclic voltammograms of 1 mM N-p-diaminotriphenylamine in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……….……………………………………… Fig. 3-1-14 Cyclic voltammograms of 1 mM compound 6 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Scheme 3-1-2 The electrochemical oxidation of 6………………... Fig. 3-1-15 Spectral changes of compound 6 during the first oxidation at +0.80 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0min﹔(b) +0.80 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4﹔(j)4.5﹔(k)5 min…………………………………...
Fig. 3-1-16 Spectral changes of compound 6 during the reduction recovery procedure at applied potential back to 0.00 V in CH3CN containing 0.2 M TBAP. (a)0.90 V, 11 min﹔(b) 0.00 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7﹔(i)8 min…………..…… Fig. 3-1-17 Spectral changes of compound 6 during the first oxidation at +1.00 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0min﹔(b)+1.00 V, 3﹔(c)6﹔(d)9﹔(e)12﹔(f)15﹔(g)18﹔(h)21min.……..…... Fig. 3-1-18 Spectral changes of compound 6 during the second oxidation at +1.02 V in CH3CN containing 0.2 M TBAP. (a) +1.00 V, 21 min﹔(b) +1.02 V, 3﹔(c)6﹔(d)9﹔(e)12﹔(f)15 min……………………. Fig. 3-1-19 Cyclic voltammograms of 1 mM compound 7 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-20 Cyclic voltammograms of 1 mM compound 8 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-21 Cyclic voltammograms of 1 mM compound 9 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-22 Spectral changes of compound 9 during the first oxidation at +0.97 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +0.97 V, 1﹔(c) 2﹔(d)3﹔(e)4﹔(f)5 min……………………………... Fig. 3-1-23 Spectral changes of compound 9 during the second oxidation at +0.97 V in CH3CN containing 0.2 M TBAP. (a) +0.97 V, 4﹔(b)5﹔(c)6﹔(d)7﹔(e)8﹔(f)9﹔(g)10﹔(h)11 min…………………………... Fig. 3-1-24 Cyclic voltammograms of 1 mM compound 10 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-25 Spectral changes of compound 10 during the first electron oxidation at +1.40V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b)+1.40 V, 1﹔(c)1.5﹔(d)2﹔(e)2.5﹔(f)3﹔(g)3.5﹔(h)4 min….. Fig. 3-1-26 Cyclic voltammograms of 1 mM compound 11 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-27 Spectral changes of compound 11 during the first electron oxidation at +1.21V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +1.21 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3 min…………… Fig. 3-1-28 Cyclic voltammograms of 1 mM compound 12 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-29 Cyclic voltammograms of 1 mM compound 13 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-30 Cyclic voltammograms of 1 mM diphenyl-p-phenylenediamine in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………………. Fig. 3-1-31 Cyclic voltammograms of 1 mM compound 14 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……….…………… Fig. 3-1-32 Spectral changes of compound 14 during the first electron oxidation at +1.16 V in CH3CN containing 0.2 M TBAP. (a) +0.00 V, 0 min﹔(b) +1.16 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4﹔(j)4.5﹔(k)5﹔(l)5.5 min………….. Fig. 3-1-33 Cyclic voltammograms of 1 mM compound 15 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-34 Spectral changes of compound 15 during the first oxidation at +0.91 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +0.91 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7﹔(i)8﹔(j)9﹔(k)10 min………………………………………………... Fig. 3-1-35 Spectral changes of compound 15 during the second oxidation at +1.11 V in CH3CN containing 0.2 M TBAP. (a)0.91 V, 10 min﹔(b) +1.11 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6 min…................................ Fig. 3-1-36 Spectral changes of compound 15 during the first oxidation at +1.00 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +0.90V, 3 min﹔(c) +1.00 V, 3﹔(d)6﹔(e)9﹔(f)12﹔(g)15 min……… Fig. 3-1-37 Spectral changes of compound 15 during the second oxidation at +1.21V in CH3CN containing 0.2 M TBAP. (a)+1.00V, 15 min﹔(b) +1.21 V 3﹔(c)6 min﹔(d) +1.26 V, 3 min…………………………. Fig. 3-1-38 Cyclic voltammograms of 1 mM compound 16 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 3-1-39 Spectral changes of compound 16 during the first electron oxidation at +1.01 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +1.01 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4﹔(j)4.5﹔(k)5﹔(l)5.5﹔(m)6﹔(n)6.5 min………………………………………………... Fig. 3-1-40 Spectral changes of compound 16 during the second electron oxidation at +1.11 V in CH3CN containing 0.2 M TBAP. (a)+1.01 V, 6.5 min﹔(b)+1.11 V 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3 min………………………………………………...
第二部分 樹枝狀卡唑化合物的合成與電化學研究 Fig. 5-1-1 一般常見的電洞傳輸層………………………..…. Fig. 5-1-2 一般常見的電子傳輸層………………………..…. Fig. 5-2-1 Potential energy versus nuclear configuration as a function of λ and HAB …………………………….. Fig. 7-1-1 Cyclic voltammograms of 1 mM compound a in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 7-1-2 Spectral changes of compound a at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.10﹔(c) +0.18﹔(d) +0.23﹔(e) +0.30﹔(f) +0.36﹔(g) +0.40﹔(h) +0.46﹔(i) +0.50 V…………………………………………… Fig. 7-1-3 Spectral changes of compound a at various applied potentials in CH3CN containing 0.1 M TBAP. (a)+0.55﹔(b)+0.56﹔(c)+0.57﹔(d)+0.58﹔(e)+0.59 V………………………………………… Fig. 7-1-4 Spectral changes of compound a at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.70﹔(b) +0.72﹔(c) +0.74﹔(d) +0.78﹔(e) +0.79﹔(f) +0.80﹔(g) +0.82﹔(h) +0.87 V……… Fig. 7-1-5 Cyclic voltammograms of 1 mM compound b in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 7-1-6 Spectral changes of compound b at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.4﹔(b) +0.51﹔(c) +0.54﹔(d) +0.57﹔(e) +0.59﹔(f) +0.61﹔(g) +0.63﹔(h) +0.65﹔(i) +0.67﹔(j) +0.71﹔(k) +0.76 V…………………... Fig. 7-1-7 Spectral changes of compound b at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.71﹔(b) +0.76﹔(c) +0.81﹔(d) +0.83﹔(e) +0.85﹔(f) +0.91﹔(g) +0.93 V…………………...
Fig. 7-1-8 Cyclic voltammograms of 1 mM compound c in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE………………......... Fig. 7-1-9 Spectral changes of compound c at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.55﹔(b) +0.59﹔(c) +0.63﹔(d) +0.67﹔(e) +0.69﹔(f) +0.71 V……………………………….. Fig. 7-1-10 Spectral changes of compound c at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.85﹔(b) +0.89﹔(c) +0.92﹔(d) +0.96﹔(e)+0.99 V………………………………………… Fig. 7-1-11 Cyclic voltammograms of 1 mM compound d in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 7-1-12 Spectral changes of compound d at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.50﹔(b) +0.54﹔(c) +0.58﹔(d) +0.60﹔(e) +0.61﹔(f) +0.62﹔(g) +0.63﹔(h) +0.64 V……… Fig. 7-1-13 Spectral changes of compound d at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.70﹔(b) +0.80﹔(c) +0.84﹔(d) +0.87﹔(e) +0.8V﹔(f) +0.90﹔(g) +0.91﹔(h) +0.92﹔(i) +0.93﹔(j) +0.94﹔(k) +0.96﹔(l) +0.99﹔(m) +1.00﹔(n) +1.03﹔(o) +1.10﹔(p) +1.14 ﹔(q) +1.17﹔(r) +1.27﹔(s) +1.37 V…………………… Fig. 7-1-14 Cyclic voltammograms of 1 mM compound e in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 7-1-15 Spectral changes of compound e at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.36﹔(c) +0.41﹔(d) +0.43﹔(e) +0.45﹔(f) +0.47﹔(g) +0.49﹔(h) +0.51﹔(i) +0.53﹔(j) +0.55 V………………………………..
Fig. 7-1-16 Spectral changes of compound e at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.55﹔(b) +0.58﹔(c) +0.61﹔(d) +0.64﹔(e) +0.67﹔(e) +0.70 V……………………………….. Fig. 7-1-17 Spectral changes of compound e at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +1.31﹔(b) +1.36﹔(c) +1.41﹔(d) +1.51 V……… Fig. 7-1-18 Cyclic voltammograms of 1 mM compound f in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 7-1-19 Spectral changes of compound f at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.50﹔(c) +0.60﹔(d) +0.70﹔(e) +0.75……………………………………………… Fig. 7-1-20 Spectral changes of compound f at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.80﹔(b) +0.85﹔(c) +0.90﹔(d) +0.95 V﹔(e) +1.00﹔(f) +1.05 V……………………………….. Fig. 7-1-21 Cyclic voltammograms of 1 mM compound g in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………………. Fig. 7-1-22 Spectral changes of compound g at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.50﹔(c) +0.53﹔(d) +0.54﹔(e) +0.55﹔(f) +0.56﹔(g) +0.57﹔(h) +0.58﹔(i) +0.59﹔(j) +0.60 V………………………….……. Fig. 7-1-23 Spectral changes of compound g at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.70﹔(b) +0.72﹔(c) +0.73﹔(d) +0.75 V……… Fig. 7-1-24 Cyclic voltammograms of 1 mM compound h in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-25 Spectral changes of compound h at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.96﹔(c) +0.99﹔(d) +1.01﹔(e) +1.03﹔(f) +1.05﹔(g) +1.07﹔(h) +1.09﹔(i) +1.11﹔(j) +1.13﹔(k) +1.14 V…………………… Fig. 7-1-26 Spectral changes of compound h at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +1.18﹔(b) +1.21﹔(c) +1.26﹔(d) +1.29﹔(e) +1.32﹔(f) +1.35﹔(g) +1.40﹔(h) +1.45 V………
表目錄 第一部分 卡唑化合物的合成與電化學研究 Table 1-1-1 Electroanalytical data for amine oxidations….......... Table 1-2-1 Electrochemical characteristics of 3,6-disubstitued carbazoles……………………………….………… Table 3-1-1 Half-wave potential(E1/2, V vs. Ag/AgCl) of carbazole derivatives in CH3CN. Containing 0.1M TBAP. Scan rate = 0.1 V/s…………………...…… Table 3-1-2 Absorption wavelength of the carbazole derivatives in CH3CN…………………………………………. Table 6-1-1 Half-wave potential(E1/2, V vs. Ag/AgCl) of carbazole derivatives in CH3CN. Containing 0.1M TBAP. Scan rate = 0.1V/s………………………… Table 6-1-2 Absorption wavelength of the carbazole derivatives in CH3CN………………………………………….
|
|
參考文獻 1.H. C. Brown, K. L. Nelson, J. Am. Chem. Soc.; 1953, 75, 24. 2.D. N. Stamires, J. Turkevich , J. Am. Chem. Soc., 1963 , 85, 2557. 3.R. N. Adams, R. F. Nelson, J. Am. Chem. Soc., 1966 , 88, 3498. 4.R. N. Adams, L. S. Marcoux, R. F. Nelson, J. Phys. Chem., 1967 , 71, 3055. 5.J. Bacon, R. N. Adams, J. Am. Chem. Soc., 1968 , 90, 6596. 6.D. W. Leedy, R. N. Adams, J. Am. Chem. Soc., 1970 , 92, 1646. 7.R. L. Hand, R. F. Nelson, J. Am. Chem. Soc., 1973 , 96, 850. 8.R. Reynold, L. L. Line, R. F. Nelson, J. Am. Chem. Soc., 1972 , 96, 1087 9.N. Adams ect. , J. Am. Chem. Soc., 1966, 88 , 3498. 10.S. J. Yeh, C. Y. Tsai, C.-Y. Huang, G.-S. Liou and S.-H. Cheng, Electrochem. Commu., 2003 , 5 , 373. 11.R. F. Nelson; R. N. Adams, J. Am. Chem. Soc., 1967, 90 , 3925. 12.李春燕, 中國醫藥學院藥物化學研究所博士論文, 2002 13.J. F. Ambrose, L. L. Carpenter, R. F. Nelson, J. Electrochem. Soc., 1975, 122, 876 14.M. Yano, K. Aoyama, Y.ishida, M. Tatsum, K. Sato, D. Shiomi, T. Takui, Polyhedron, 2003, 22, 2003 15.M. Park, J. R. Buck, C. J. Rizzo, Tetrahedron, 1998, 54, 12707 16.F. A. Neagebauer, H. Fischer, Chem. Ber., 1972, 105, 2686 17.J. P. Chen, A. Natansohn, Macromolecules, 1999, 32, 3171 18.D. J. Liaw, P. N. Hus, W. H. Chen, S. L. Lin, Macromolecules, 2002, 35, 4669 19.S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Macromolecules, 2004, 38, 307 20.K. Brunner, A. Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. Kiggen, B. M. W. Langeveld, J. Am. Chem. Soc., 2004, 126, 6035 21.J. F. Ambrose, R. F. Nelson, J. Electrochem. Soc., 1968, 115, 1159 22.C. Ganzorig, M. Fujihira, Appl. Phys. Lett., 2000 , 77 , 4211 23.S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett., 1996 , 69 , 2160 24.Launay, J.-P. Chem. Soc. Rev. 2001, 30, 386 25.江長凌, 台灣大學化學研究所碩士論文, 2003 26.B. S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 2002, 31, 168 27.C. Lamber, G. Noll, J. Am. Chem. Soc., 1999 , 121 , 8434 28.C. Lamber, G. Noll, F. Hampel, J.Phys. Chem. A, 2001 , 105 , 7751 29.C. Lamber, S. Amthor, J. Schelter J.Phys. Chem. A, 2004 , 108 , 6474 30.C. Lamber, D. Leusser, D. Stalke, M. Zobel, J. Popp, J. Am. Chem. Soc., 2004 , 126 , 7834 31.C. Lamber, J. C. Durivage, S. R. Marder, J-L, Bredas, S, Barlow, J. Am. Chem. Soc., 2004 , 126 , 2727 32.Robin, M. B.;Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247 33.黃智彥, 國立暨南國際大學化學研究所碩士論文, 2003 34.邱國源, 國立暨南國際大學化學研究所碩士論文, 2004 35.林宗賢, 國立暨南國際大學化學研究所碩士論文, 2005 36.李家宏, 國立暨南國際大學化學研究所碩士論文, 2005
|
| |