跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱思凱
研究生(外文):Chiu Su kai
論文名稱:卡唑及其衍生物的合成、電化學及光譜電化學研究
論文名稱(外文):Synthesis and Electrochemical Studies of Carbazoles
指導教授:蘇玉龍蘇玉龍引用關係
指導教授(外文):Yuhlong Oliver Su
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:117
外文關鍵詞:carbazole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文共分為兩個部分,第一部分主要是在探討卡唑衍生物的合
成與電化學研究,本研究針對卡唑衍生物苯環上對位的3、6 位置,
及第9 位置苯環的對位位置取代基的特性,探討其電化學活性及電化
學反應的機制。研究發現,此類的化合物若是3、6 位置具有取代基,
在氧化電位約E1/2= +1.23 V 產生可逆的氧化還原電位,但當3、6 位
置沒有取代基時,氧化為不可逆的;亦可由光譜電化學證明卡唑化合
物單體經過氧化後隨即在3 或6 位置產生卡唑化合物的二聚物。
第二部分則是接續第一部分的研究,將卡唑分子改變為更大的七
個苯環的樹枝狀分子化合物,並觀察不同取代基對於電化學性質的效
應。在循環伏安法中可得知此類化合物在氧化的部分可以看到兩對可
逆的氧化還原,推電子基會造成分子容易被氧化,拉電子基則造成分
子不容易被氧化。從光譜電化學圖譜觀察,此類化合物的特色在於其
正離子自由基在約1000~2500 nm的區域有很寬的吸收,藉由此研究
方法,我們可以得到各種氧化態的光譜變化。
The abstract altogether divides into two part, the first part mainly is
discuss and electrochemical studies of carbazole derivatives. This
research characterizes mainly on 3, 6 and 9-position substituent of
carbazoles.
In this research, the oxidation is irreversible when 3, 6-position don』t
have any substituent, on the other hand, there is a redox couple at about
E1/2= +1.23 V when that have substituent. It also can prove by
spectroelectrochemistry, when we oxidize the compound and will
produce a dimer carbazole.
The second part the first part of research, the dendrimer derivatives
of carbazole, and observe the substitueut effect in electrochemistry.
In cyclic voltammetry, we can find two redox couples in oxidative
more negatively, electro-withdrawing groups will make potential more
positively.
In spectroelectrochemistry, the characterization of cation radical has
a broad band in near-IR region. By the spectroeletrochemistry studies, we
can get different spectrum when we applied the different potential.
目錄
第一部分 卡唑化合物的合成與電化學研究
第一章 前言
1-1 三苯胺化合物………………………………..........……...
1-2 Carbazole化合物…………………………….…..……….
第二章 實驗
2-1 藥品………………………………………………………
2-2 Carbazole衍生物的合成製備…………………….…..…
(1) 9-phenylcarbazole, (1)………..……………………….…
(2) 3,6-dibromo-9-phenylcarbazole, (2)….…………………
(3) 3,6-di-tert-butyl-9-phenylcarbazole, (3)….………..……
(4) 3,6-dinitro-9-phenylcarbazole, (4)………………………
(5) 9-phenylcarbazole-3,6-diamine, (5)…..…………………
(6) 9-(4-methoxyphenyl)carbazole, (6)……………...………
(7) 9-(4-methoxyphenyl)-3,6-dinitrocarbazole, (7)…………
(8) 9-(4-methoxyphenyl)-carbazole-3,6-diamine, (8).………
(9) 9-p-tolylcarbazole, (9)…………………………...………
(10) 3,6-dibromo-9-p-tolylcarbazole, (10)………….…………
(11) 3,6-di-t-butyl-9-p-tolylcarbazole, (11)………………...…
(12) 9-(4-nitrophenyl)carbazole, (12)………….…………..…
(13) 4-(carbazol-9-yl)benzenamine, (13)…….……………..…
(14) 3,6-di-t-butyl-9-(4-t-butylphenyl)carbazole, (14)………..
(15) 9-(4-methoxyphenyl)-3-(9-(4-methoxyphenyl) carbazol-3-yl)carbazole, (15)……………………..…...…
(16) 9-phenyl-3-(9-phenylcarbazol-3-yl)carbazole, (16)…..…
第三章 Carbazoles的電化學及光譜電化學研究
3-1 Carbazole的衍生物……………………...………………
(1) 9-phenylcarbazole, (1)………..……………………….…
(2) 3,6-dibromo-9-phenylcarbazole, (2)….…………………
(3) 3,6-di-t-butyl-9-phenylcarbazole, (3)….…………..……
(4) 3,6-dinitro-9-phenylcarbazole, (4)………………………
(5) 9-phenylcarbazole-3,6-diamine, (5)…..…………………
(6) 9-(4-methoxyphenyl)carbazole, (6)……………...………
(7) 9-(4-methoxyphenyl)-3,6-dinitrocarbazole, (7)…………
(8) 9-(4-methoxyphenyl)-carbazole-3,6-diamine, (8).………
(9) 9-p-tolylcarbazole, (9)…………………………...………
(10) 3,6-dibromo-9-p-tolylcarbazole, (10)………….…………
(11) 3,6-di-t-butyl-9-p-tolylcarbazole, (11)…………...………
(12) 9-(4-nitrophenyl)carbazole, (12)………….…………..…
(13) 4-(carbazol-9-yl)benzenamine, (13)…….……………..…
(14) 3,6-di-tert-butyl-9-(4-tert-butylphenyl)carbazole, (14).…
(15) 9-(4-methoxyphenyl)-3-(9-(4-methoxyphenyl) carbazol-3-yl)carbazole, (15)……………………..…...…
(16) 9-phenyl-3-(9-phenylcarbazol-3-yl)carbazole, (16)…..…
第四章 結論………………………………………………..

第二部分 樹枝狀卡唑化合物的合成與電化學研究
第五章 前言
5-1 有機發光元件……………………………………………
5-2 價間電子傳導(Intervalence charge transfer, IVCT)…....
5-3 研究目的…………………………………………………
第六章 實驗
6-1 藥品………………………………………………………
6-2 Carbazole樹枝狀衍生物合成……………….………..…
(a)N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9-phenyl-9H-
carbazole-3,6-diamine……………………..………………

(b)9-phenyl-N3,N3,N6,N6-tetrap-tolyl-9H-carbazole-3,6-
diamine…………………………………………………..
(c)N3,N3,N6,N6,9-pentaphenyl-9H-carbazole-3,6-diamine….....
(d)N3,N3,N6,N6-tetrakis(4-nitrophenyl)-9-phenyl-9H-carbazole
-3,6-diamine………………………………………………..
(g)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetrakis(4-nitrophenyl)
-9H-carbazole-3,6-diamine………………………………...
(e)N3,N3,N6,N6,9-pentakis(4-methoxyphenyl)-9H-carbazole-3,
6-diamine…………………………………………………..
(f)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetraphenyl-9H-
carbazole-3,6-diamine……………………………………..

第七章 樹枝狀carbazoles的電化學及光譜電化學研究
7-1 Carbazole的樹枝狀衍生物…………………………..….
(a)N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9-phenyl-9H-
carbazole-3,6-diamine……………………..………………
(b)9-phenyl-N3,N3,N6,N6-tetrap-tolyl-9H-carbazole-3,6-
diamine…………………………….……………………..
(c)N3,N3,N6,N6,9-pentaphenyl-9H-carbazole-3,6-diamine….....
(d)N3,N3,N6,N6-tetrakis(4-nitrophenyl)-9-phenyl-9H-carbazole
-3,6-diamine………………………………………………..
(e)N3,N3,N6,N6,9-pentakis(4-methoxyphenyl)-9H-carbazole-3,
6-diamine…………………………………………………..
(f) 9-(4-methoxyphenyl)-N3,N3,N6,N6-tetra-p-tolyl-9H-
carbazole-3,6-diamine….………………………………….
(g)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetraphenyl-9H-
carbazole-3,6-diamine……………………………………..
(h)9-(4-methoxyphenyl)-N3,N3,N6,N6-tetrakis(4-nitrophenyl)
-9H-carbazole-3,6-diamine………………………………...
第八章 結論………………………………………………..
參考文獻…………………………………………….....................














圖目錄
第一部分 卡唑化合物的合成與電化學研究
Scheme 1-1-1 The electrochemical dimerization of TPA………….
Scheme 1-1-2 The electrochemical cyclization reaction…………..
Scheme 1-2-1 The ECE mechanism of carbazole……….………...
Fig. 3-1-1 Cyclic voltammograms of 1 mM compound 1 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE.………...………….
Scheme 3-1-1 The electrochemical oxidation of 1………………...
Fig. 3-1-2 Spectral changes of compound 1 during the first oxidation at +1.10 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b)+1.10 V, 1﹔(c)3﹔(d)5﹔(e)7﹔(f)9﹔(g)11﹔(h)13﹔(i)16 min…......
Fig. 3-1-3 Spectral changes of compound 1 during the second oxidation at +1.16V in CH3CN containing 0.2 M TBAP. (a) +1.10 V, 16 min﹔(b) +1.16V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7﹔(i)12 min…
Fig. 3-1-4 Spectral changes of compound 1 during the reduction recovery procedure at applied potential back to 0.00V in CH3CN containing 0.2 M TBAP. (a)+1.61 V, 1 min﹔(b)0.00 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7 min………………………
Fig. 3-1-5 Spectral changes of compound 1 during the first oxidation at +1.24 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b)+1.24V, 3﹔(c)6﹔(d)9﹔(e)12﹔(f)15 min…………………………...
Fig. 3-1-6 Spectral changes of compound 1 during the second oxidation at +1.34 V in CH3CN containing 0.2 M TBAP. (a)1.24 V, 15 min﹔(b)+1.34 V, 3﹔(c)6 min………………………………………………...
Fig. 3-1-7 Cyclic voltammograms of 1 mM compound 2 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-8 Spectral changes of compound 2 during the first electron oxidation at +1.30 V in CH3CN containing 0.2 M TBAP. (a) 0.00 V, 0 min﹔(b) +1.30V, 0.5﹔(c)1.5﹔(d)2﹔(e)2.5﹔(f)3 min……
Fig.3-1-9 Cyclic voltammograms of 1 mM compound 3 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-10 Spectral changes of compound 3 during the first electron oxidation at +1.11 V in CH3CN containing 0.2 M TBAP. (a)0.00 V 0 min﹔(b) +1.11 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4 min………………………….………..
Fig. 3-1-11 Cyclic voltammograms of 1 mM compound 4 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-12 Cyclic voltammograms of 1 mM compound 5 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-13 Cyclic voltammograms of 1 mM N-p-diaminotriphenylamine in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……….………………………………………
Fig. 3-1-14 Cyclic voltammograms of 1 mM compound 6 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Scheme 3-1-2 The electrochemical oxidation of 6………………...
Fig. 3-1-15 Spectral changes of compound 6 during the first oxidation at +0.80 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0min﹔(b) +0.80 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4﹔(j)4.5﹔(k)5 min…………………………………...


Fig. 3-1-16 Spectral changes of compound 6 during the reduction recovery procedure at applied potential back to 0.00 V in CH3CN containing 0.2 M TBAP. (a)0.90 V, 11 min﹔(b) 0.00 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7﹔(i)8 min…………..……
Fig. 3-1-17 Spectral changes of compound 6 during the first oxidation at +1.00 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0min﹔(b)+1.00 V, 3﹔(c)6﹔(d)9﹔(e)12﹔(f)15﹔(g)18﹔(h)21min.……..…...
Fig. 3-1-18 Spectral changes of compound 6 during the second oxidation at +1.02 V in CH3CN containing 0.2 M TBAP. (a) +1.00 V, 21 min﹔(b) +1.02 V, 3﹔(c)6﹔(d)9﹔(e)12﹔(f)15 min…………………….
Fig. 3-1-19 Cyclic voltammograms of 1 mM compound 7 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-20 Cyclic voltammograms of 1 mM compound 8 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-21 Cyclic voltammograms of 1 mM compound 9 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-22 Spectral changes of compound 9 during the first oxidation at +0.97 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +0.97 V, 1﹔(c) 2﹔(d)3﹔(e)4﹔(f)5 min……………………………...
Fig. 3-1-23 Spectral changes of compound 9 during the second oxidation at +0.97 V in CH3CN containing 0.2 M TBAP. (a) +0.97 V, 4﹔(b)5﹔(c)6﹔(d)7﹔(e)8﹔(f)9﹔(g)10﹔(h)11 min…………………………...
Fig. 3-1-24 Cyclic voltammograms of 1 mM compound 10 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….

Fig. 3-1-25 Spectral changes of compound 10 during the first electron oxidation at +1.40V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b)+1.40 V, 1﹔(c)1.5﹔(d)2﹔(e)2.5﹔(f)3﹔(g)3.5﹔(h)4 min…..
Fig. 3-1-26 Cyclic voltammograms of 1 mM compound 11 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-27 Spectral changes of compound 11 during the first electron oxidation at +1.21V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +1.21 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3 min……………
Fig. 3-1-28 Cyclic voltammograms of 1 mM compound 12 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-29 Cyclic voltammograms of 1 mM compound 13 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-30 Cyclic voltammograms of 1 mM diphenyl-p-phenylenediamine in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE………………………….
Fig. 3-1-31 Cyclic voltammograms of 1 mM compound 14 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……….……………
Fig. 3-1-32 Spectral changes of compound 14 during the first electron oxidation at +1.16 V in CH3CN containing 0.2 M TBAP. (a) +0.00 V, 0 min﹔(b) +1.16 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4﹔(j)4.5﹔(k)5﹔(l)5.5 min…………..
Fig. 3-1-33 Cyclic voltammograms of 1 mM compound 15 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….


Fig. 3-1-34 Spectral changes of compound 15 during the first oxidation at +0.91 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +0.91 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6﹔(h)7﹔(i)8﹔(j)9﹔(k)10 min………………………………………………...
Fig. 3-1-35 Spectral changes of compound 15 during the second oxidation at +1.11 V in CH3CN containing 0.2 M TBAP. (a)0.91 V, 10 min﹔(b) +1.11 V, 1﹔(c)2﹔(d)3﹔(e)4﹔(f)5﹔(g)6 min…................................
Fig. 3-1-36 Spectral changes of compound 15 during the first oxidation at +1.00 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +0.90V, 3 min﹔(c) +1.00 V, 3﹔(d)6﹔(e)9﹔(f)12﹔(g)15 min………
Fig. 3-1-37 Spectral changes of compound 15 during the second oxidation at +1.21V in CH3CN containing 0.2 M TBAP. (a)+1.00V, 15 min﹔(b) +1.21 V 3﹔(c)6 min﹔(d) +1.26 V, 3 min………………………….
Fig. 3-1-38 Cyclic voltammograms of 1 mM compound 16 in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 3-1-39 Spectral changes of compound 16 during the first electron oxidation at +1.01 V in CH3CN containing 0.2 M TBAP. (a)0.00 V, 0 min﹔(b) +1.01 V, 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3﹔(h)3.5﹔(i)4﹔(j)4.5﹔(k)5﹔(l)5.5﹔(m)6﹔(n)6.5 min………………………………………………...
Fig. 3-1-40 Spectral changes of compound 16 during the second electron oxidation at +1.11 V in CH3CN containing 0.2 M TBAP. (a)+1.01 V, 6.5 min﹔(b)+1.11 V 0.5﹔(c)1﹔(d)1.5﹔(e)2﹔(f)2.5﹔(g)3 min………………………………………………...



第二部分 樹枝狀卡唑化合物的合成與電化學研究
Fig. 5-1-1 一般常見的電洞傳輸層………………………..….
Fig. 5-1-2 一般常見的電子傳輸層………………………..….
Fig. 5-2-1 Potential energy versus nuclear configuration as a function of λ and HAB ……………………………..
Fig. 7-1-1 Cyclic voltammograms of 1 mM compound a in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-2 Spectral changes of compound a at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.10﹔(c) +0.18﹔(d) +0.23﹔(e) +0.30﹔(f) +0.36﹔(g) +0.40﹔(h) +0.46﹔(i) +0.50 V……………………………………………
Fig. 7-1-3 Spectral changes of compound a at various applied potentials in CH3CN containing 0.1 M TBAP. (a)+0.55﹔(b)+0.56﹔(c)+0.57﹔(d)+0.58﹔(e)+0.59 V…………………………………………
Fig. 7-1-4 Spectral changes of compound a at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.70﹔(b) +0.72﹔(c) +0.74﹔(d) +0.78﹔(e) +0.79﹔(f) +0.80﹔(g) +0.82﹔(h) +0.87 V………
Fig. 7-1-5 Cyclic voltammograms of 1 mM compound b in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-6 Spectral changes of compound b at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.4﹔(b) +0.51﹔(c) +0.54﹔(d) +0.57﹔(e) +0.59﹔(f) +0.61﹔(g) +0.63﹔(h) +0.65﹔(i) +0.67﹔(j) +0.71﹔(k) +0.76 V…………………...
Fig. 7-1-7 Spectral changes of compound b at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.71﹔(b) +0.76﹔(c) +0.81﹔(d) +0.83﹔(e) +0.85﹔(f) +0.91﹔(g) +0.93 V…………………...

Fig. 7-1-8 Cyclic voltammograms of 1 mM compound c in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE……………….........
Fig. 7-1-9 Spectral changes of compound c at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.55﹔(b) +0.59﹔(c) +0.63﹔(d) +0.67﹔(e) +0.69﹔(f) +0.71 V………………………………..
Fig. 7-1-10 Spectral changes of compound c at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.85﹔(b) +0.89﹔(c) +0.92﹔(d) +0.96﹔(e)+0.99 V…………………………………………
Fig. 7-1-11 Cyclic voltammograms of 1 mM compound d in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-12 Spectral changes of compound d at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.50﹔(b) +0.54﹔(c) +0.58﹔(d) +0.60﹔(e) +0.61﹔(f) +0.62﹔(g) +0.63﹔(h) +0.64 V………
Fig. 7-1-13 Spectral changes of compound d at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.70﹔(b) +0.80﹔(c) +0.84﹔(d) +0.87﹔(e) +0.8V﹔(f) +0.90﹔(g) +0.91﹔(h) +0.92﹔(i) +0.93﹔(j) +0.94﹔(k) +0.96﹔(l) +0.99﹔(m) +1.00﹔(n) +1.03﹔(o) +1.10﹔(p) +1.14 ﹔(q) +1.17﹔(r) +1.27﹔(s) +1.37 V……………………
Fig. 7-1-14 Cyclic voltammograms of 1 mM compound e in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-15 Spectral changes of compound e at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.36﹔(c) +0.41﹔(d) +0.43﹔(e) +0.45﹔(f) +0.47﹔(g) +0.49﹔(h) +0.51﹔(i) +0.53﹔(j) +0.55 V………………………………..

Fig. 7-1-16 Spectral changes of compound e at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.55﹔(b) +0.58﹔(c) +0.61﹔(d) +0.64﹔(e) +0.67﹔(e) +0.70 V………………………………..
Fig. 7-1-17 Spectral changes of compound e at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +1.31﹔(b) +1.36﹔(c) +1.41﹔(d) +1.51 V………
Fig. 7-1-18 Cyclic voltammograms of 1 mM compound f in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-19 Spectral changes of compound f at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.50﹔(c) +0.60﹔(d) +0.70﹔(e) +0.75………………………………………………
Fig. 7-1-20 Spectral changes of compound f at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.80﹔(b) +0.85﹔(c) +0.90﹔(d) +0.95 V﹔(e) +1.00﹔(f) +1.05 V………………………………..
Fig. 7-1-21 Cyclic voltammograms of 1 mM compound g in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….
Fig. 7-1-22 Spectral changes of compound g at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.50﹔(c) +0.53﹔(d) +0.54﹔(e) +0.55﹔(f) +0.56﹔(g) +0.57﹔(h) +0.58﹔(i) +0.59﹔(j) +0.60 V………………………….…….
Fig. 7-1-23 Spectral changes of compound g at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.70﹔(b) +0.72﹔(c) +0.73﹔(d) +0.75 V………
Fig. 7-1-24 Cyclic voltammograms of 1 mM compound h in CH3CN containing 0.1 M TBAP. Scan rate = 0.1 V/s. Working electrode : GCE…………………….


Fig. 7-1-25 Spectral changes of compound h at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +0.00﹔(b) +0.96﹔(c) +0.99﹔(d) +1.01﹔(e) +1.03﹔(f) +1.05﹔(g) +1.07﹔(h) +1.09﹔(i) +1.11﹔(j) +1.13﹔(k) +1.14 V……………………
Fig. 7-1-26 Spectral changes of compound h at various applied potentials in CH3CN containing 0.1 M TBAP. (a) +1.18﹔(b) +1.21﹔(c) +1.26﹔(d) +1.29﹔(e) +1.32﹔(f) +1.35﹔(g) +1.40﹔(h) +1.45 V………




表目錄
第一部分 卡唑化合物的合成與電化學研究
Table 1-1-1 Electroanalytical data for amine oxidations…..........
Table 1-2-1 Electrochemical characteristics of 3,6-disubstitued carbazoles……………………………….…………
Table 3-1-1 Half-wave potential(E1/2, V vs. Ag/AgCl) of carbazole derivatives in CH3CN. Containing 0.1M TBAP. Scan rate = 0.1 V/s…………………...……
Table 3-1-2 Absorption wavelength of the carbazole derivatives in CH3CN………………………………………….
Table 6-1-1 Half-wave potential(E1/2, V vs. Ag/AgCl) of carbazole derivatives in CH3CN. Containing 0.1M TBAP. Scan rate = 0.1V/s…………………………
Table 6-1-2 Absorption wavelength of the carbazole derivatives in CH3CN………………………………………….
參考文獻
1.H. C. Brown, K. L. Nelson, J. Am. Chem. Soc.; 1953, 75, 24.
2.D. N. Stamires, J. Turkevich , J. Am. Chem. Soc., 1963 , 85, 2557.
3.R. N. Adams, R. F. Nelson, J. Am. Chem. Soc., 1966 , 88, 3498.
4.R. N. Adams, L. S. Marcoux, R. F. Nelson, J. Phys. Chem., 1967 , 71, 3055.
5.J. Bacon, R. N. Adams, J. Am. Chem. Soc., 1968 , 90, 6596.
6.D. W. Leedy, R. N. Adams, J. Am. Chem. Soc., 1970 , 92, 1646.
7.R. L. Hand, R. F. Nelson, J. Am. Chem. Soc., 1973 , 96, 850.
8.R. Reynold, L. L. Line, R. F. Nelson, J. Am. Chem. Soc., 1972 , 96, 1087
9.N. Adams ect. , J. Am. Chem. Soc., 1966, 88 , 3498.
10.S. J. Yeh, C. Y. Tsai, C.-Y. Huang, G.-S. Liou and S.-H. Cheng, Electrochem. Commu., 2003 , 5 , 373.
11.R. F. Nelson; R. N. Adams, J. Am. Chem. Soc., 1967, 90 , 3925.
12.李春燕, 中國醫藥學院藥物化學研究所博士論文, 2002
13.J. F. Ambrose, L. L. Carpenter, R. F. Nelson, J. Electrochem. Soc., 1975, 122, 876
14.M. Yano, K. Aoyama, Y.ishida, M. Tatsum, K. Sato, D. Shiomi, T. Takui, Polyhedron, 2003, 22, 2003
15.M. Park, J. R. Buck, C. J. Rizzo, Tetrahedron, 1998, 54, 12707
16.F. A. Neagebauer, H. Fischer, Chem. Ber., 1972, 105, 2686
17.J. P. Chen, A. Natansohn, Macromolecules, 1999, 32, 3171
18.D. J. Liaw, P. N. Hus, W. H. Chen, S. L. Lin, Macromolecules, 2002, 35, 4669
19.S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Macromolecules, 2004, 38, 307
20.K. Brunner, A. Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. Kiggen, B. M. W. Langeveld, J. Am. Chem. Soc., 2004, 126, 6035
21.J. F. Ambrose, R. F. Nelson, J. Electrochem. Soc., 1968, 115, 1159
22.C. Ganzorig, M. Fujihira, Appl. Phys. Lett., 2000 , 77 , 4211
23.S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett., 1996 , 69 , 2160
24.Launay, J.-P. Chem. Soc. Rev. 2001, 30, 386
25.江長凌, 台灣大學化學研究所碩士論文, 2003
26.B. S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 2002, 31, 168
27.C. Lamber, G. Noll, J. Am. Chem. Soc., 1999 , 121 , 8434
28.C. Lamber, G. Noll, F. Hampel, J.Phys. Chem. A, 2001 , 105 , 7751
29.C. Lamber, S. Amthor, J. Schelter J.Phys. Chem. A, 2004 , 108 , 6474
30.C. Lamber, D. Leusser, D. Stalke, M. Zobel, J. Popp, J. Am. Chem. Soc., 2004 , 126 , 7834
31.C. Lamber, J. C. Durivage, S. R. Marder, J-L, Bredas, S, Barlow, J. Am. Chem. Soc., 2004 , 126 , 2727
32.Robin, M. B.;Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247
33.黃智彥, 國立暨南國際大學化學研究所碩士論文, 2003
34.邱國源, 國立暨南國際大學化學研究所碩士論文, 2004
35.林宗賢, 國立暨南國際大學化學研究所碩士論文, 2005
36.李家宏, 國立暨南國際大學化學研究所碩士論文, 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文