[1]IEEE Std 802.16e/D6, Draft IEEE Standard for Local and metropolitan area networks-Part16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Control Layers for Combined Fixed and Mobile Operation in Licensed Bands. New York:IEEE, Feb. 2005.
[2]A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed., Prentice-Hall, 1999.
[3]E. C. Ifeachor and B. W. Jervis, Digital Signal Processing, A Practical Approach, Addison-Wesley, 1993.
[4]A. Peled and B. Liu, Digital Signal Processing, Theory, Design, and Implementation, Rulin, 1976.
[5]J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, 2nd ed., Macmillan Publishing Company, 1992.
[6]D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System Design Approach, John Wiley & Sons, 1988.
[7]S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in Proc. IPPS'96, pp. 766-770, Apr. 1996.
[8]S. He and M. Torkelson, “Design and implementation of a 1024-point pipeline FFT processor,” in Proc. CICC'98, pp. 766-770, Apr. 1998.
[9]S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” in Proc. ISSSE’98, pp. 257-262, Oct. 1998.
[10]王興潭,應用於OFDM調變(解調變)之管線架構基底22快速傅立葉轉換製作Pipeline Radix-22 IFFT/FFT for OFDM (DE)Modulation,私立中華大學電機工程學系碩士論文,2002年6月。[11]S. Sukhsawas and K. Benkrid, “A high-level implementation of a high performance pipeline FFT on Virtex-E FPGAs,” in Proc. ISVLSI'04, pp. 229-232, Feb. 2004.
[12]T. Widhe, J. Melander, and L. Wanhammar, “Design of efficient radix-8 butterfly PEs for VLSI,” in Proc. ISCAS '97, vol. 3, pp. 2084-2087, June 1997.
[13]L. Jia, Y. Gao, and H. Tenhunen, “Efficient VLSI implementation of radix-8 FFT algorithm,” in Proc. PACRIM'99, pp. 468-471, Aug. 1999.
[14]Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A dynamic scaling FFT processor for DVB-T applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 2005-2013, Nov. 2004.
[15]S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “An improved radix-16 FFT algorithm,” Electrical and Computer Engineering, Canadian Conf., vol. 2, pp. 1089- 1092, May 2004.
[16]L.W. Chan and M.Y. Chen, “A new systolic array for discrete Fourier transform,” IEEE Trans. Signal Processing, vol. 36, pp. 1665-1666, Oct. 1988.
[17]W. H. Fang and M. L. Wu, “An efficient unified systolic architecture for the computation of discrete trigonometric transforms,” in Proc. ISCAS '97, vol. 3, pp. 2092-2095, June 1997.
[18]T. S. Chang and C.W. Jen, "Hardware Efficient Transform Designs with Cyclic Formulation and Subexpression Sharing," in Proc. ISCAS '98, vol. 2, pp. 398-401, May 1998.
[19]J. I. Guo, “An efficient design for one dimensional discrete cosine transform using parallel adders,” in Proc. ISCAS '00, vol. 5, pp. 725-728, May 2000.
[20]B. M. Baas, “A Low-Power, High-Performance, 1024-Point FFT Processor,” IEEE J. Solid-State Circuits, vol. 34, pp. 380-387, Mar. 1999.
[21]J. C. Kuo, C. H. Wen and A. Y. Wu, “Implementation of a programmable 64/spl sim/2048-point FFT/IFFT processor for OFDM-based communication systems,” in Proc. ISCAS '03, vol. 2, pp. II-121 - II-124, May 2003.
[22]L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, 1975.
[23]E. E. Swartzlander, W. K. W. Young and S. J. Joseph, “A radix 4 delay commutator for fast Fourier transform processor implementation,” IEEE J. Solid-State Circuits, vol. 19, pp. 702-709, Oct. 1984
[24]E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline FFT processors for VLSI implementation,” IEEE Trans. Comput., pp. 414-426, May 1984.
[25]A. M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE Trans. Comput., pp. 993-1001, Oct. 1974.
[26]IEEE Std 802.16-2004, IEEE Standard for Local and metropolitan area networks-Part16:Air Interface for Fixed Broadband Wireless Access Systems. New York:IEEE, June 2004
[27]J. H. Reed, Software Radio: A Modern Approach to Radio Engineering, Prentice Hall PTR, 2002.
[28] 陳慶鴻等人,多頻帶正交分頻多工之超寬頻設計與挑戰, Soc Technical Journal