跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊千慧
研究生(外文):Chien-Hui Yang
論文名稱:利用近似之最大概似法預測重覆性實驗計畫中型II受限資料及構建相關之最佳化演算法
論文名稱(外文):Predicting Type II Censored Data from Repetitious Experiments Using Approximate Maximum Likelihood Method and Optimizing the Response of the Repetitious Experiments with Type II Censored Data
指導教授:唐麗英唐麗英引用關係
指導教授(外文):Lee-Ing Tong
學位類別:博士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:59
中文關鍵詞:實驗設計受限資料近似之最大概似法田口實驗受限資料預測式
外文關鍵詞:Design of ExperimentsCensored DataApproximate Maximum Likelihood MethodTaguchi MethodsPredictor of Censored Data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
工業界在研發新產品或是改善產品品質時常應用實驗設計(Design of Experiments, D.O.E.)或田口方法(Taguchi Method)來規畫實驗及分析實驗數據,以有效找出最佳之因子水準組合。目前科技產品之可靠度已達到某種水準之上,在應用實驗設計或田口方法找出最佳因子水準組合的過程中,若將與可靠度有關的變數(如:產品壽命)當作反應變數(response),則執行實驗所需花費的時間會非常冗長,若能在執行實驗的過程中,先設定實驗中受限資料的個數,而將無法觀察到的實驗數據當成受限資料(censored data)來處理,則可節省實驗時間及加快產品上市。當一組實驗數據包含受限資料時,其統計模式不再具直交性(orthogonality),因此無法使用一般之變異數分析方法來找出實驗之最佳因子水準組合。中、外文獻所提出分析受限資料的方法,大多是針對型I受限資料,這些方法中有些使用不易或假設條件嚴格,故實用價值有限。另外,型I受限資料之中止時間亦不易設定,若中止時間設定太小,則收集到的資料就會太少,使得分析結果難以令人信服;若中止時間設定太大,雖可收集到較多的資料,甚至可收集到完整的資料,但實驗成本會因時間消耗過長而增加。因此,本研究針對型II受限資料,在製程資料服從常態分配及製程之平均數與變異數均未知的假設下,提出四種近似最大概似預測式(approximate maximum likelihood predictors; AMLPs)來預測受限資料。首先,本研究利用兩種形式之概似函數(likelihood functions)來推導出受限資料之近似最大概似預測式,由於概似函數中包含了故障函數(hazard function),本研究採用兩種方式近似故障函數之值以求其封閉解。第一種方式為將第一種概似函數中的故障函數以其期望值(expected value)代之,再推導出受限資料之預測式,稱此預測式為第I型近似最大概似估計式(簡稱Model I AMLP);第二種方式是將第二種概似函數中的故障函數以其期望值(expected value)代之,再推導出受限資料之預測式,稱此預測式為第II型近似最大概似估計式(簡稱Model II AMLP);第三種近似最大概似預測式則是利用泰勒展開式(Taylor series)來近似第一種概似函數中的故障函數,再推導出受限資料之預測式,稱此預測式為第III型近似最大概似估計式(簡稱Model III AMLP);第四種近似最大概似預測式則是利用泰勒展開式來近似第二種概似函數中的故障函數,再推導出受限資料之預測式,稱此預測式為第IV型近似最大概似估計式(簡稱Model IV AMLP)。然後本研究利用蒙地卡羅模擬法與變異數分析法來比較此四種預測式之準確性與有效性,結果發現Model II AMLP與Model IV AMLP較為準確與有效。本研究最後再利用Model II AMLP與Model IV AMLP發展出一套分析具受限資料之實驗數據最佳化演算法,並分別利用傳統實驗計畫與田口計畫之實例,證實本研究所提的受限資料分析演算法確實有效。
Design of experiments and Taguchi methods are widely employed in industry to develop new product or enhance product quality and reliability. Because the high technology products are often required to have high reliability, the lifetime or reliability of the high technology products is often considered as a response variable in the reliability experiments. Such experiments are usually time-consuming. In order to shorten the time for bringing the new product to the market, the experiments must be terminated before all the experiment runs are completed. In these situations, the incomplete data are called censored data. When the censored data are arisen in the experimental data, the orthogonality of the statistical models no longer exists and the usual analysis of variance methods of analyzing experimental data cannot be used to determine the optimal factor–level combinations. Many studies proposed various methods to analyze the censored data; especially for type I censored data. However, these methods are either computationally complex or have little practical use. Besides, the time of terminating the experiments to obtain type I censored data cannot be determined easily. If the time of terminating the experiments is too short, the number of uncensored data may be too few; if the time of terminating the experiments is too long, the number of uncensored data may be too many, and consequently, the experimental cost increases. Since the population mean and variance of experimental data are usually unknown in practice, this study proposes four approximate maximum likelihood predictors (AMLPs) to predict the type II censored data under the assumption that process data followed a normal distribution with unknown mean variance. This study utilizes two types of likelihood function to derive AMLPs. Both of two types of likelihood functions involve hazard functions. The first alternative is to replace the hazard functions by their expected values in the first type of likelihood function and then derive the predictor (which is designated as Model I AMLP). The second alternative is to replace the hazard functions by their expected values in the second type of likelihood function and then derive the predictor (which is designated as Model II AMLP). The third alternative is to use the Taylor series expressions of hazard functions to approximate the hazard functions to obtain the predictor (which is designated as Model III AMLP). The fourth alternative is to use the Taylor series expressions of hazard functions to approximate the hazard functions to obtain the predictor (which is designated as Model IV AMLP). Monte Carlo simulation and analysis of variance (ANOVA) method are used to compare the bias and effectiveness of these AMLPs. The results indicate that Model II AMLP and Model IV AMLP are more effective. Finally, the algorithms of optimizing the response from repetitious experiments are developed. Two cases are also given to demonstrate the effectiveness of the proposed optimization algorithms.
中文摘要……………………………………………………i
英文摘要……………………………………………………iii
目錄…………………………………………………………v
表目錄……………………………………………………viii
圖目錄………………………………………………………ix
第一章 緒論………………………………………………………………1
1.1 研究背景與動機……………………………………………………1
1.2 研究目的……………………………………………………………4
1.3 研究架構……………………………………………………………6
第二章 文獻探討………………………………………………………7
2.1 受限資料之介紹……………………………………………………7
2.2 考量可靠度於傳統實驗計畫或田口計畫之相關文獻……………8
2.3 近似最大概似預測式之相關文獻…………………………………9
2.3.1 最大概似法………………………………………………………9
2.3.2 修正最大概似預測式(假設受限資料服從於平均數未知、但變異數已知之常態分配)…………………………………………………10
2.4 實驗設計受限資料分析法之相關文獻……………………………10
2.4.1 疊代最小平方法…………………………………………………10
2.4.2 部分實驗計畫之受限資料疊代分析程序………………………11
2.4.3 實驗計畫受限資料非參數分析法………………………………12
2.4.4 類神經網路於實驗計畫中受限資料分析之研究………………12
2.5 故障函數之期望值及泰勒展開式之介紹…………………………13
2.5.1 故障函數期望值之介紹…………………………………………13
2.5.2 故障函數之泰勒展開式介紹……………………………………14
第三章 研究方法………………………………………………………15
3.1 Model I AMLP………………………………………………………20
3.2 Model II AMLP……………………………………………………22
3.3 Model III AMLP……………………………………………………24
3.4 Model IV AMLP……………………………………………………27
第四章 近似最大概似預測式之模擬比較……………………………30
第五章 利用受限資料預測式構建受限資料之最佳化演算法………41
5.1 統計假設……………………………………………………………41
5.2 受限資料演算法……………………………………………………41
5.2.1 重覆性實驗的型II右側受限資料演算法………………………42
5.2.2 重覆性田口實驗的型II右側受限資料演算法…………………42
第六章 實例驗證………………………………………………………44
6.1 重覆性實驗計畫……………………………………………………44
6.1.1 問題描述…………………………………………………………44
6.1.2 實驗數據分析……………………………………………………45
6.1.3 與完整實驗數據分析結果之比較………………………………48
6.2 田口式實驗計畫……………………………………………………50
6.2.1 問題描述…………………………………………………………50
6.2.2 實驗數據分析……………………………………………………52
6.2.3 與完整實驗數據分析結果之比較………………………………55
第七章 結論與建議……………………………………………………56
參考文獻…………………………………………………………………58
[1] Chiao, C. H. and Hamada, M. (1996) “Robust Reliability for Light Emitting Diodes Using Degradation Measurements,” Quality and Reliability Engineering International 12: 89-94.
[2] Condra, L. W. (1993) Reliability Improvement with Design of Experiments, Marcel Dekker, New York, NY, 1993.
[3] Chowdhury, A. H. and Fard, N. S. (2001) “Estimation of Dispersion Effects from Robust Design Experiments with Censored Response Data,” Quality and Reliability Engineering International, 17: 25-32.
[4] Hahn, G. J., Morgan, C. B. and Schmee, J. (1981) “The Analysis of a Fractional Factorial Experiment with Censored Data using Iterative Least Squares,” Technometrics 23: 33-36.
[5] Hamada, M. and Wu, C. F. J. (1991) “Analysis of Censored Data from Highly Fractionated Experiments,” Technometrics 33: 25-38.
[6] Kaminsky, Kenneth S. and Rhodin, Lennart S. (1985) “Maximum Likelihood Prediction,” Ann. Inst. Statist. Math. 37: 507-517.
[7] Lawless, J. F. (1982) Statistical Models and Methods for Lifetime Data. John Wiley & Sons, Inc.
[8] Lu, J. C. and Cemal, Unal (1994) “Process Characterization & Optimization Based on Censored Data from Highly Fractionated Experiments,” IEEE Transactions on Reliability 43: 145-155.
[9] Montgomery, D. C. (2001) Design and Analysis of Experiments Fourth Edition. John Wiley & Sons, Inc.
[10] Raqab, Mohammad Z. (1997) “Modified Maximum Likelihood Predictors of Future Order Statistics from Normal samples,” Computational Statistics and Data Analysis 25: 91-106.
[11] Schmee, J. and Hahn, G. J. (1979) “A Simple Method for Regression Analysis with Censored Data,” Technometrics 21: 417-434.
[12] Su, C. T. and Miao, C. L. (1998) “Neural Network Procedures for Experimental Analysis with Censored Data,” International Journal of Quality Science 3(3): 239-253.
[13] Teichroew, D. (1956) “Tables of Expected Values of Order Statistics and Products of Order Statistics for Samples of Size Twenty and Less from the Normal Distribution,” Ann. Math. Statist. 27: 410-426
[14] Tong, L. I. and Su, C. T. (1997) “A Non-Parametric Method for Experimental Analysis with Censored Data,” International Journal of Quality & Reliability Management 14(5): 456-463.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林儒(2002)。國民小學數學低成就學生知學習輔導、教學和評量的策略-一位國民小學教師實際教學工作經驗的觀察報告。竹縣文教,25,52-59。
2. 林碧珍(1991)。國小兒童對於乘除法應用問題之認知結構。新竹師院學報,5,221-288。
3. 吳金聰(1998)。乘法教學的良方。屏師科學教育,8,44-52。
4. 沈易達(1996)。特殊兒童之電腦輔助學習教育-從6W分析電腦輔助學習課程。國小特殊教育,21,33-41。
5. 尤彥喬、詹勳國(2004)。國小二年級學童乘法單元文字題解題歷程轉變之個案研究-以屏東市一國小為例。修平人文社會學報,3,39-63。
6. 王立行(1992)。電腦輔助教學的理論與實務探討。資訊與教育月刊,30,24-33。
7. 陳東陞(1993)。低成就學生的診斷與輔導。研習資訊,9(3),17-21。
8. 陳東陞(1996) 。數學科學習困難學生補救教學的實施(下)。研習資訊,10(6),42-44。
9. 張英鵬(1993)。增強策略在電腦輔助教學方案中對國小學習障礙兒童加法學習之影響。特殊教育與復健學報,3,39-68。
10. 張泰山(1998)。電腦輔助教學面面觀。北縣國教輔導,6,5-11。
11. 張再明、陳政見(1998)。特殊教育實施電腦輔助教學之相關問題探討。嘉義師院學報,12,73-93。
12. 陳淑琳(2000)。談新課程對乘法基本教材的處理。屏師科學教育,12,14-22。
13. 黃立賢(1996)。國小低成就學童的輔導策略,國教園地,57/58,52-56。
14. 游麗卿(1997)。從實作表現診斷學生乘除法的錯誤觀念。測驗與輔導,149,3094-3098。
15. 楊坤堂(1993)。低成就學生的診斷與教學。國小特殊教育,14,12-18。