跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳頌翔
研究生(外文):Sung-Hsiang Chen
論文名稱:連續批量排程機制之構建--以薄膜液晶顯示器組立製程為例
論文名稱(外文):Building the Scheduling Mechanism for Contiguous Batching Operations – A Case Study of TFT-LCD Cell Assembly Process
指導教授:鍾淑馨鍾淑馨引用關係
指導教授(外文):Shu-Hsing Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:薄膜液晶顯示器批量排程問題混合整數規劃
外文關鍵詞:TFT-LCDBatch scheduling problemmixed integer programming
相關次數:
  • 被引用被引用:7
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薄膜液晶顯示器包含陣列、組立與模組三大主要製程,其中組立製程之中段係由數個批量工作站所組成。多數的學者皆僅考量單階多機或二階單機之批量排程問題,尚無針對多階多機之批量排程問題作一探討。另外,組立製程考量到品質的因素,增加了產品等待加工時間不可過長之限制,更加深了排程之複雜度。因此,本文在符合等候時間限制且最小化其瓶頸工作站換線次數的條件下,針對組立廠之連續批量工作站,發展一混合整數規劃與一啟發式法則,以解決其排程問題。
本文首先透過「需求規劃模組」估計各產品到臨連續批量工作站之時間點,並設定規劃時格以降低規劃複雜度;接著,透過「產能粗估模組」推估各工作站在各規劃週期之最大可用產能,並且考慮機台之整備時間,以各工作站最大可換線次數來定義連續批量工作站之瓶頸所在。在得知瓶頸工作站以及相關生產資訊後,「數學規劃解法」考量各批量工作站之最大加工批量數與產品等候時間限制,期望在達到產出目標之前提下,排訂連續工作站之詳細排程,並且儘量減少不必要之機台設置時間,以避免突發狀況之發生。而為了解決真實世界之問題,本文發展一「啟發式法則」快速求解連續批量工作站之排程問題,其主要利用限制理論之精神,先排定瓶頸批量工作站之排程,並且以最大加工批量排訂以達到最小化設置時間之目標。
實驗結果顯示,設定規劃時格可大幅降低排程複雜度,以利數學規劃解法與啟發式法則之計算;而產能粗估模組可明確定義出批量工作站之瓶頸所在。吾人所發展之數學規劃解法,可求得最佳解,使瓶頸工作站設置次數最小化,且符合等候時間之限制,而啟發式法則則可於數十秒鐘即可找到一合理解,增加了實際運作之可行性。但針對節省總換線次數而言,數學規劃解法之績效大多優於啟發式法則。
The three main manufacturing process of Thin Film Transistor – Liquid Crystal Display (TFT-LCD) are TFT Array process, Cell Assembly process and Module Assembly process. The Cell Assembly process includes several batch workstations; and the panel cannot wait too long without being processed after leaving the previous batch workstation. Previous researches and papers only consider the scheduling problems for single-stage with multiple-machines or for two-stages each with single-machine. Seldom scholars take into account the multiple-stage multiple-machine scheduling problem that exists in the cell assembly process. In view of this complex problem, we build the scheduling mechanism for contiguous batching operations by developing a mixed integer programming model and a heuristic rule which considers the waiting time constraint between workstations and the setup time minimization of bottleneck workstation.
The proposed scheduling mechanism contains three modules: demand planning module, mixed integer programming (MIP) module, and heuristic rule module. First of all, the demand planning module approximates the arriving time of jobs to the first batch workstation. We set a new planning time unit to reduce the problem solving time. Secondly, we calculate the maximum available capacity during each planning period in the capacity evaluation module. In this module, the maximum available setup times is calculated for each workstation in order to recognize the bottleneck batch workstation. Then the mixed integer programming (MIP) module and the heuristic rule are built to set the detail schedule for contiguous batching operations considering the maximum lot sizing of each batch workstation and the waiting time constraint between two consecutive operations. The objective of this MIP model is to satisfy the throughput target and to minimize the total setup times of bottleneck workstation. For the sake of solving the real world cases rapidly, the heuristic rule is developed based on the concept of Theory of Constraint. The heuristic rule adopts full batch size policy to set the bottleneck workstation’s schedule so as to minimize the total setup time.
Experimental result shows that the complexity of the scheduling problem is reduced by the new time unit, thus the time for solution deriving is shorten. Also, the MIP model can derive an optimal solution satisfying the waiting time constraint between workstations and the total setup time minimization. Finally, the heuristic rule can search out a feasible solution only in several seconds, and it enlarges the application range in this way. However, it may derive a schedule with more total setup times than the solution of MIP model.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 ix
符號一覽表 xi
第一章、緒論 1
1.1、研究背景與動機 1
1.2、研究目的 3
1.3、研究範圍與限制 3
1.4、研究方法與流程 5
第二章、文獻回顧 7
2.1、薄膜液晶面板組立(Cell Assembly)製程介紹 7
2.1.1、薄膜液晶顯示器製造程序簡介 7
2.1.2、薄膜液晶顯示器Cell段製程簡介 8
2.2、批量製程排程問題相關文獻 15
2.2.1、批量製程排程問題之分類 15
2.2.1.1、依批量特性分類 15
2.2.1.2、依排程問題分類 16
2.2.2、產品族排程模式相關文獻 17
2.2.3、批量機台模式相關文獻 18
2.3、彈性流程型工廠排程問題相關文獻 21
第三章、模式構建 23
3.1、問題定義與分析 23
3.2、整體邏輯與架構 26
3.3、需求規劃 29
3.3.1、計算規劃時格 29
3.3.2、計算各產品預計來到時間 31
3.4、產能估算 33
3.5、數學規劃解法 36
3.5.1、最佳化批量排程模組 36
3.5.2、檢驗設置時間之合理性 42
3.6、啟發式法則 43
3.6.1、瓶頸工作站排程 45
3.6.2、前推排程 48
3.6.3、後推排程 51
第四章、實例驗證 53
4.1、系統環境說明 53
4.1.1、生產環境說明 53
4.1.2、主生產排程規劃假設 54
4.2、需求規劃模組之執行過程與規劃結果 55
4.2.1、計算規劃時格 56
4.2.2、計算各產品預計來到時間 57
4.3、產能估算模組之執行過程與規劃結果 60
4.4、數學規劃解法之執行過程與規劃結果 63
4.4.1、最佳化批量排程模組 63
4.4.2、檢驗設置時間之合理性 66
4.5、啟發式法則之執行過程與規劃結果 67
4.5.1、瓶頸工作站排程 67
4.5.2、前推排程 70
4.5.3、後推排程 72
4.6、結果分析與比較 75
第五章、結論與未來研究方向 79
5.1、結論 79
5.2、未來研究方向 81
參考文獻 82
[1]李俊昇,「TFT-LCD批量製程派工法則之設計」,國立交通大學工業工程研究所,碩士論文,民國91年。
[2]黃東茂,「LCD構裝製程設備技術發展簡介況」,機械工程,頁62-64,2001年2月。
[3]顧鴻壽,「光電液晶平面顯示器技術基礎及應用」,新文京開發出版有限公司,2001年9月。
[4]蔡秉宏,「液晶面板組裝廠產能配置模組之構建」,國立交通大學工業工程研究所,碩士論文,民國91年。
[5]A. Vignier, P. Commandeur, C. Proust, “New lower bound for the hybrid flow shop scheduling problem”, IEEE 6th International Conference on Emerging Technologies and Factory Automation Proceedings, p.446-451, 1997
[6]B. Chen, C.N. Potts, V.A. Strusevich, “Approximation algorithms for two-machine flow shop scheduling with batch setup times”, Mathematical Programming, Vol. 82, p. 255-271, 1998.
[7]C.L. Monma, C.N. Potts, “On the complexity of scheduling with batch setup times”, Operation Research, Vol. 37, p. 798-804,1989.
[8]C.L. Monma, C.N. Potts, “Analysis of heuristics for preemptive parallel machine scheduling with batch setup times” , Operation Research, Vol. 41, No. 5, p. 981-993, 1993.
[9]C.N. Potts and M.Y. Kovalyov, “Scheduling with batch: A review”, European Journal of Operational Research, Vol. 120, p.228-249,2000.
[10]G.C. Lee and Y.D. Kim, “A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness”, International Journal of Production Research, Vol. 42, No. 22, p.4731-4743, 2004.
[11]H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove, ”Local search for single machine scheduling with batch setup times to minimize total weighted completion time”, Annals of Operation Research, Vol. 70, p. 261-279, 1997.
[12]M. Pinedo, “Scheduling: Theory, Algorithm, and Systems”, Prentice Hall, New Jersey, 2nd Edition, 2002.
[13]M. Pranzo, “Batch scheduling in a two-machine flow shop with limited buffer and sequence independent setup times and removal times”, European Journal of Operational Research, Vol. 153, p. 581-592, 2004.
[14]P. Damodaran, K. Srihari, “Mixed integer formulation to minimize makespan in a flow shop with batch processing machines”, Mathematical and Computer Modelling, Vol. 40, p. 1465-1472, 2004.
[15]R. Linn, W. Zhang, “Hybrid flow shop scheduling: A survey”, Computers & Industrial Engineering, Vol. 37, p. 57-61, 1999
[16]S.G. KOH, P.H. KOO, J.W. HA, W.S. Lee, “Scheduling parallel batch processing machines with arbitrary job sizes and incompatible job families”, International Journal of Production Research, Vol. 42, No. 19, p. 4091-4107, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top