跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃元平
研究生(外文):Yuan-Ping Huang
論文名稱:發展脊椎動物種類鑑定的寡核苷酸晶片
論文名稱(外文):Development of an Oligonucleotide Chip for Vertebrate Species Identification
指導教授:林志生林志生引用關係
指導教授(外文):Chih-Sheng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:94
中文關鍵詞:種源鑑別粒線體DNADNA晶片
外文關鍵詞:Species identificationMitochondrial DNADNA chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
準確且可靠的動物種類鑑別方法在過去幾十年已穩定地增加,特別是由於最近的食品恐慌以及起因於大量進行非法買賣瀕危物種而造成生物多樣性的全面危機。最近的食品恐慌(例如:牛的海綿狀腦病變、禽流感、口蹄疫,等等),一些不當的食品製造者、宗教原因、食品過敏反應和基因改造生物(GMOs)已經明顯地加深關於食品組成的大眾意識。基於擴增和分析DNA方面而言,一種被稱為物種分子鑑別領域的新穎生物科技學可提供出有效的解決辦法。以DNA為基礎方法是使用肉品中物種所擁有的特殊DNA序列和檢測這物種特殊序列的可能性。尤其,粒腺體cytochrome b(Cyt b)基因序列已被證明是對此目的有幫助的。許多研究顯示Cyt b用於族群分析可足夠去區別家禽和家畜之間的不同種類。就分子生物學和技術而言,隨著這快速改進「傳統」篩選DNA序列的發展,進而對於物種鑑定提出有趣地遠景研究。因此,微陣列技術現下被認為能對生物多樣性的監控打開新遠景。
在目前的研究中,我們以最少量的primer數目同時在全血或是骨骼肌的動物來源中去擴增出足夠數量且具有物種特異性的粒腺體DNA(mtDNA)片段。這些primers是藉由生物資訊軟體的幫助下,依照Cyt b基因中具高度同源性區域的序列分析結果去進行設計,並且對應於全部物種的每條primer最多只包含3個mismatchs。此universal primer sets長度為19 - 23 mer,此是在包括全部物種Cyt b的序列分析結果中以人工的方式進行設計。由此方法去設計出3組共5對的PCR泛用引子對(PCR universal primer sets)(定名為PAL primer sets),可用於擴增粒腺體Cyt b中的DNA片段產生出一短鏈的PCR片段(short PCR fragment SPF)長度從103 bp到116 bp。此PAL primer sets確知可以非常敏感的偵測到57種動物物種,包括家畜,家禽及其相關的種類。為了藉由雜交反應(hybridization)去鑑別出特殊的動物種類,於是從SPF序列的比對結果中,在PAL primer sets之間序列去得到大小為50 mer的序列,再由其中去獲得57個具特異性的探針(probes)。這些50 mer的探針在其5端的部分以aminolinker去進行修飾及合成,並且固定到特殊玻璃材質的晶片上而可獲得mtDNA晶片。每一個晶片的矩陣上包含57個物種的特異性寡核苷酸探針(specific-species oligonucleotide probes),2個控制組(control)的探針,以及1個空白組(blank)探針。此具物種特異性的Cyt b片段是藉由以螢光Cy3或Cy5修飾過的PAL universal primer sets去擴增出來。經由螢光標記過的目標物(target)與mtDNA晶片以雜交反應去產生出特殊的螢光訊號而可鑑別出動物的種類。因此物種種類的鑑定和確定物種數量是將不同動物種類的混合物經由複合式聚合酶鏈反應(multiplex PCR)來進行擴增,以及mtDNA晶片的螢光雜交反應去做確認。
在這項研究中,所使用的參考動物種類是由一般商業來源中獲得共13種不同種類的脊椎動物(C. moschata、G. gallu、S. camelu、A. cygnoides、M. gallopavo、C. familiaris、F. catus、M. musculus、O. cuniculus、B. taurus、R. norvegicus、S. scrof和O. aries)。其SPF是使用PAL universal primer set A-f、B-f和AB-r去擴增出C. moschata、G. gallus、S. camelus、A. cygnoides和M. gallopavo五種物種。F. catus, C. familiaris, M. musculus和O. cuniculus四種物種則是以PAL universal primer set C-f和C-r進行擴增。R. norvegicus, B. taurus, S. scrofa和O. aries是以PAL universal primer set D-f、E-f和DE-r進行擴增。在此研究中,13個動物的物種確認主要是使用PAL primer sets於PCR或是multiplex PCR來擴增粒腺體Cyt b基因的目標區段,接著透過mtDNA晶片的雜交反應去分析擴增出來的DNA片段。在結果方面,可清楚得知藉由multiplex PCR技術去偵測到這些動物中具物種特異性的粒腺體Cyt b基因片段,是能夠從混和物中去偵測到其中的單一物種或是同時去偵測2 - 5種物種。這些species-specific primer sets是可使用於PCR和multiplex PCR中,並且能夠有效和明確地擴增出全部種類的Cyt b基因。在每個目標基因中也可被觀察到具有強烈雜交反應的訊號。這些結果指出包含57個species-specific探針的50 mer寡核苷酸陣列能夠明確符合於他們相對應的目標基因。而在晶片上雜交點的訊號強度極限是去測試DNA模版(DNA template)以1︰1、1︰0.1和1︰0.01的比例混和來觀察雜交信號的改變。在此結果中1% B. taurus與1% S. camelus的雜交點所得到的訊號強度是足夠高過背景的訊號值。這個「物種鑑別」晶片的設計雖然僅是透過人工來選擇探針的方式,其所得到探針大體上是準確且可信的。如此的設計方式或許是最容易的方法去得到57個物種甚至是更多種類的的低密度晶片(low-density chip)。
在這些研究內顯示出50 mer mtDNA晶片對於家禽和家畜的物種是具有物種鑑別的能力。在mtDNA晶片內的粒腺體Cyt b序列是有能力做為哺乳動物的物種鑑別所使用的標誌(marker)。另外它是可以在目前所擁有的陣列組合中加入更多的基因,使得將來所發展出包含各種哺乳動物的特殊晶片其鑑別能力能有所提升。此方式所得到的陣列式鑑別晶片是直接而且簡單的。它特別是在生態學和農業方面呈現出一種新應用方法的重要想法。一旦晶片已可被設計完成並且是可使用的,任何一般的實驗室應該能在短時間內進行鑑別。對於更廣泛的用途和經濟方面兩者的相關而言,或許將可發展為「Biodiversity」晶片,其中可包含大量鑑別特徵(diagnostic features)去分辨出在細菌,地衣,軟體動物,昆蟲,黴菌,哺乳動物等等物種的重要種類。
The need for accurate and reliable methods for animal species identification has steadily increased during past decades, particularly with the recent food safety issues and the overall crisis of biodiversity primarily resulting from the huge ongoing illegal traffic of endangered species. Recent food scares (e.g. bovine spongiform encephalopathy, avian influenza, foot-and-mouth disease, etc.), malpractices of some food producers, religious reasons, food allergies and genetically modified organisms (GMOs) have tremendously reinforced public awareness regarding the composition of food products. A relatively new biotechnological field, known as species molecular identification, based on the amplification and analysis of DNA, offers promising solutions. This DNA-base method used is based on the presence of species-specific sequences of DNA in meat and the possibility of detecting such sequences specifically. In particular, the mitochondrial cytochrome b (Cyt b) gene sequence has proven helpful for this purpose. Numerous studies showed that Cyt b is adequate for the discrimination of different species of poultry and livestock with cluster analysis. With the fast improvements in molecular biology and technology, alternatives to ‘classical’ DNA sequencing are being developed that present interesting perspectives for species identification studies. Therefore, microarray technology can now open up new perspectives for biodiversity monitoring.
In the present study, we showed using primer number as possibly minimal to simultaneously amplify and quantify specific mitochondrial DNA (mtDNA) fragments of animal source in whole blood or skeleton muscle. These primers were designed according the alignment results of identifying highly homologous regions within the Cyt b gene by bioinformation software and each primer contained a maximum of three mismatches to all animal species wherever possible. The universal primer sets 19 - 23 mer in length was designed manually on an alignment including all Cyt b sequences. In this approach, 5 universal PCR primer pairs in 3 groups of universal primer sets (named PAL primer sets) generating a short PCR fragment (SPF) were designed for amplification of the DNA fragment of mitochondrial Cyt b ranging from 103 bp to 116 bp. The PAL primer sets permit ultrasensitive detection in 57 animal species, including livestock, poultry and relevant species. To identify specific animals by hybridization, 57 specific probes in size of 50 mer inter-primer sequences were deduced from the alignment of SPF sequences. These 50 mer probes modified with aminolinker at the 5’-end were synthesized and immobilized onto a chip slide glass to create the mtDNA Chip. Each matrix contained 57 specific-species oligonucleotide probes, two control probes, and one blank in one chip was duplicated. The specific-species Cyt b fragments were amplified by universal primer sets modified with fluorescent Cy3 or Cy5 at 5’-end. The fluorescent labeled-targets used to hybridize the mtDNA Chip to generate designed profiling for species identification. Species identification and quantification were tested from the mixtures of different animal species by the multiplex PCR and fluorescent hybridization of mtDNA Chip.
In this study, reference animal species were obtained from 13 different vertebrate animals (C. moschata, G. gallu, S. camelu, A. cygnoides, M. gallopavo, C. familiaris, F. catus, M. musculus, O. cuniculus, B. taurus, R. norvegicus, S. scrof, and O. aries) from commercial sources. The SPF were amplified using the PAL universal primer set A-f, B-f, and AB-r for C. moschata, G. gallus, S. camelus, A. cygnoides and M. gallopavo. F. catus, C. familiaris, M. musculus and O. cuniculus used the PAL universal primer set C-f and C-r. R. norvegicus, B. taurus, S. scrofa and O. aries used the PAL universal primer set D-f, E-f, and DE-r. The discrimination of 13 animal species was based on PCR or multiplex PCR amplification of target regions of mtDNA Cyt b genes using PAL primer sets, followed by analysis of the amplified DNA by hybridization with the mtDNA Chip. In the results, it was clear that the multiplex PCR technique can detect specific mitochondrial Cyt b gene fragment of these animal species from the mixture of either species alone or from mixed 2 - 5 animal species. These results indicate that the 50 mer oligonucleotide array containing 57 species-specific probes appears to be specific to their corresponding target genes. The limit of hybridized spots intensity on the chip had tested hybridization signals changed were observed with template DNA proportions using 1:1, 1:0.1, and 1:0.01. In this result, the hybridization signal intensity of the spots was significantly higher than the background signal when the B. taurus in 1% and S. camelus in 1%. The design of this ‘species identification’ chip was done by visually choosing probes, which were generally accurate and robust. This might be the easiest approach for a low-density chip including up to 57 species or more species.
In these studies showed that 50 mer mtDNA Chip had the discrimination power as for species identification in poultry and livestock. The mitochondrial Cyt b sequences in the mtDNA Chip would be promising markers for the species identification of mammals. It can be used more genes in combination to enhance redundancies and thus robustness of a specific chip including mammals in the future. This approach for a diagnostic microarray-chip is straightforward and simple. It represents an important idea for the application of a new method particularly in the field of ecology and agriculture. Once a chip has been designed and is available, any small laboratory should be able to carry out the diagnostics in a short time. Of broader use, and therefore economically more relevant, could be a ‘Biodiversity-Chip’, containing a large number diagnostic features to distinguish key species in the taxa of bacteria, lichen, molluscs, insects, fungi, mammals, etc.
Content
Chinese Abstract............................................................................................................. i
English Abstract.............................................................................................................. iv
Content............................................................................................................................. viii
Content of Figures........................................................................................................... xi
Content of Tables............................................................................................................. xiii
I. Research Background and Significance.................................................................... 1
1-1. The significance of mitochondrial DNA................................................................ 1
1-2. Mitochondrial DNA structure................................................................................. 1
1-3. Nuclear-mitochondrial interactions........................................................................ 2
1-4. The mitochondrial cytochrome b gene of mammals.............................................. 3
1-5. Outlook for the animal species identification......................................................... 5
1-6. Methods of protein analysis used in the animal species identification................... 8
1-7. Methods of DNA analysis used in the animal species identification..................... 10
1-7-1. Polymerase Chain Reaction........................................................................... 10
1-7-2. Restriction Fragment Length Polymorphisms............................................... 12
1-7-3. Single strand conformational polymorphism analysis.................................. 13
1-7-4. Random amplified polymorphic DNA (RAPD) analysis.............................. 14
1-7-5. Identification species using DNA microarrays.............................................. 14
1-7-6. Quartz crystal microbalance (QCM)............................................................. 16
II. Materials and Methods.............................................................................................. 25
2-1. Reagents.................................................................................................................. 25
2-2. Specimens of vertebrate animal.............................................................................. 25
2-3. Mitochondrial DNA extraction............................................................................... 25
2-4. Design of PCR primers........................................................................................... 26
2-5. Amplification of the fragment of the mitochondrial DNA Cyt b gene................... 27
2-6. Gel/PCR DNA extraction and purification............................................................. 27
2-7. Digestion of restriction enzymes............................................................................ 28
2-8. Cloning the DNA fragments of Cyt b gene............................................................ 28
2-9. Design of specific oligonucleotide microarray probes for species identification... 30
2-10. mtDNA Chip design and fabrication.................................................................... 31
2-11. Printing of the animal species-specific oligonucleotide probes on glass slides.... 31
2-12. mtDNA Chip Pre-Hybridization........................................................................... 32
2-13. Synthesis of Cy5-labeled or Cy3-labeled targets................................................. 32
2-14. Hybridization of the mtDNA Chip....................................................................... 33
2-14-1. Hybridization condition............................................................................... 33
2-14-2. Post-Hybridization washing........................................................................ 33
2-14-3. mtDNA Chip scanning and data analyses................................................... 34
2-15. Design of PCR primers for QCM......................................................................... 35
2-16. Amplification of the fragment of the mitochondrial DNA Cyt b gene for QCM.................................................................................................................... 35
2-17. Design of species-specific probes for QCM analysis........................................... 36
2-18. QCM measurement for species identification...................................................... 37
2-18-1. QCM apparatus............................................................................................ 37
2-18-2. Immobilization of the oligonucleotide probe on gold................................. 37
2-18-3. Hybridisation with purified PCR product................................................... 38
III. Result and Discussion............................................................................................... 58
3-1. The total DNA Extraction....................................................................................... 58
3-2. PCR amplification of target mtDNA Cyt b genes................................................... 58
3-3. Identification of animal species by RFLP............................................................... 60
3-4. Identification of animal species by mtDNA Chip................................................... 62
3-5. Detection sensitivity of 50 mer mtDNA array hybridization.................................. 63
3-6. PCR amplification of target mtDNA Cyt b genes using the BSO universal primer set................................................................................................................ 66
3-7. Direct monitoring of the single species-specific probe immobilization and hybridization of single species target...................................................................... 66
Conclusions...................................................................................................................... 80
References........................................................................................................................ 82

Content of Figures
Figure 1-1 This diagram summarizes the major features of mtDNA referred to in the text........................................................................................................ 18
Figure 1-2. The Principle of Quartz crystal microbalance (QCM)............................... 19
Figure 2-1 PAL universal primer sets and species-specific probes designed for animal species identification...................................................................... 39
Figure 2-2. Alignment pattern of Cyt b gene for the specific probes and universal primer pair design....................................................................................... 40
Figure 2-3 The 103 bp Cyt b PCR fragments of B. taurus sequencing electropherogram of pCR 2.1-TOPO vector............................................... 41
Figure 2-4 Probe arrangement of the mtDNA Chip for species identification............ 42
Figure 2-5 A schematic describing the oligonucleotide array detection assay............. 43
Figure 2-6 Fabrication of the mtDNA Chip................................................................. 44
Figure 2-7 Diagram of the current feature (A) defining the local background component.................................................................................................. 45
Figure 3-1 Agarose electrophoresis of mtDNA extractions extracted from all animal species skeleton muscle or whole blood in this study.................... 68
Figure 3-2 Agarose electrophoresis of PCR products amplified from the mitochondrial Cyt b gene of various species............................................. 69
Figure 3-3 Electrophoretic analysis of the mutiplex PCR products of the Cyt b gene fragment by using two restriction enzymes RsaI and StyI digestion.......... 70
Figure 3-4 Electrophoretic analysis of the multiplex PCR products of the Cyt b gene fragment in varying proportions by using two restriction enzymes RsaI and StyI digested on 3% agarose gel.................................................. 71
Figure 3-5 Electrophoretic analysis of the multiplex PCR products of the Cyt b gene fragment in mixed 4 - 5 animal species by using two restriction enzymes RsaI and StyI digested on 3% agarose gel................................... 72
Figure 3-6 Electrophoretic analysis of the PCR products of the Cyt b gene fragment by using two restriction enzymes RsaI and StyI digestion......................... 73
Figure 3-7 mtDNA Chip hybridization pattern of single species PCR product amplified by PAL universal primer for species identification.................... 74

Figure 3-8 mtDNA Chip hybridization pattern of the multiplex PCR products of B. taurus and S. camelus in varying proportions amplified by different universal primer set.................................................................................... 75
Figure 3-9 mtDNA Chip hybridization pattern of the multiplex PCR products of B. taurus and S. scrofa in varying proportions amplified by the same universal primer set.................................................................................... 76
Figure 3-10 mtDNA Chip hybridization pattern of the multiplex PCR products of mixed 4 - 5 animal species in the same proportions amplified by the PAL universal primer set............................................................................ 77
Figure 3-11 Agarose electrophoresis of PCR products amplified from the mitochondrial Cyt b gene of B. taurus, O. aries, and S. scrofa.................. 78
Figure 3-12 Frequency variations during the immobilization of the thiolated single species-specific probe directly onto the gold electrode of the quartz crystal and hybridization of single species target....................................... 79


Content of Tables
Table 1-1 Fate of light and heavy chain transcripts from mitochondrial DNA.......... 20
Table 1-2 Examples of forensic or food substrates for molecular analysis................ 21
Table 1-3 Various methodologies based on protein analysis for the identification of seafood........................................................................................................ 22
Table 1-4 Common molecular techniques useful for evolutionary studies, and selected examples in the Acari................................................................... 23
Table 2-1 List of 13 species in all 57 animal species for species identification used in this study................................................................................................ 46
Table 2-2 List of all 57 animal species for species identification and the PAL universal primer sets used for amplification of all 57 animal species in this study..................................................................................................... 47
Table 2-3 The PAL (poultry and livestock) universal primer sets used in this study............................................................................................................ 50
Table 2-4 Restriction fragment length polymorphism (RFLP) patterns (in bp for each band) of the PCR fragments from animal species generated after digestion with endonuclease enzymes........................................................ 51
Table 2-5 Oligonucleotide probes for identificaiton of all 57 animal species in the study........................................................................................................... 52
Table 2-6 The BSO (B. taurus, S. scrof, and O. aries) universal primer sets used for QCM..................................................................................................... 56
Table 2-7 Oligonucleotide probes for identificaiton of B. taurus, S. scrof, and O. aries in QCM analysis................................................................................ 57
Abouheif E, Zardoya R, Meyer A. 1998. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J Mol Evol 47:394-405.
Alexandre I, Hamels S, Dufour S, Collet J, Zammatteo N, De Longueville F, Gala JL, Remacle J. 2001. Colorimetric silver detection of DNA microarrays. Anal Biochem 295:1-8.
Alford RL, Hammond HA, Coto I, Caskey CT. 1994. Rapid and efficient resolution of parentage by amplification of short tandem repeats. Am J Hum Genet 55:190-195.
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome. Nature 290: 457-465.
Andrasko J, Rosen B. 1994. Sensitive identification of hemoglobin in bloodstains from different species by high performance liquid chromatography with combined UV and fluorescence detection. J Forensic Sci 39:1018-1025.
Aquadro CF, Greenberg BD. 1983. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287-312.
Ayala FJ. 1983. Protein polymorphism: adaptative and taxonomic significance. In: Oxford and Rollison (eds). Systematic Association Special 24:3-26.
Baker CS, Dalebout ML, Lavery S, Ross HA. 2003. www.DNA-surveillance: applied molecular taxonomy for species conservation and discovery. Trends Ecol Evol 18:271-272.
Belosludtsev Y, Iverson B, Lemeshko S, Eggers R, Wiese R, Lee S, Powdrill T, Hogan M. 2001. DNA microarrays based on noncovalent oligonucleotide attachment and hybridization in two dimensions. Anal Biochem 292:250-256.
Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167-180.
Brodmann PD, Nicholas G, Schaltenbrand P, Ilg EC. 2001. Identifying unknown game species: experience with nucleotide sequencing of the mitochondrial cytochrome b gene and a subsequent basic local alignment search tool search. Eur Food Res Technol 212:491-496.
Brown JR, Beckenbach AT, Smith MJ. 1993. Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol Biol Evol 10:326-341.
Brown JR, Beckenbach K, Beckenbach AT, Smith MJ. 1996. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142:525-535.
Brown WM, George M, Jr., Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967-1971.
Buntjer JB, Lenstra JA. 1998. Mammalian species identification by interspersed repeat PCR fingerprinting. J Ind Microbiol Biotechnol 21:121-127.
Call DR, Chandler DP, Brockman F. 2001. Fabrication of DNA microarrays using unmodified oligonucleotide probes. Biotechniques 30:368-372, 374, 376.
Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta MN, Saccone C. 1994. Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol 39:589-597.
Caruso F, Rodda E, Furlong DN. 1997. Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development. Anal Chem 69:2043-2049.
Cavic BA, Thompson M. 2000. Adsorptions of plasma proteins and their elutabilities from a polysiloxane surface studied by an on-line acoustic wave sensor. Anal Chem 72:1523-1531.
Cespedes A, Garcia T, Carrera E, Gonzalez I, Fernandez A, Hernandez PE, Martin R. 1999. Application of polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) to identification of flatfish species. J AOAC Int 82:903-907.
Chen FC, Hsieh YH. 2000. Detection of pork in heat-processed meat products by monoclonal antibody-based ELISA. J AOAC Int 83:79-85.
Chikuni K, Mori Y, Tabata T, Saito M, Monma M, Kosugiyama M. 1995. Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia. J Mol Evol 41:859-866.
Chow S, Inoue S. 1993. Intra-and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus tuna species. Bull Nat Res Inst Far Seas Fish 30:207-225.
Chrisey LA, Lee GU, O'Ferrall CE. 1996. Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucl Acids Res 24:3031-3039.
Civera T. 2003. Species identification and safety of fish products. Vet Res Commun 27(Suppl. 1):481-489.
Clayton DA. 1982. Replication of animal mitochondrial DNA. Cell 28:693-705.
Colombo F, Cardia A, Renon P, Canto´ni CA. 2004. Note on the identification of Rupicapra rupicapra species by polymerase chain reaction product sequencing. Meat Sci 66:753-755.
Colombo MM, Colombo F, Biondi PA, Malandra R, Renon P. 2000. Substitution of fish species detected by thin-layer isoelectric focusing and a computer-assisted method for the evaluation of gels. J Chromatogr A 880:303-309.
Comstock KE, Ostrander EA, Wasser SK. 2003. Amplifying nuclear and mitochondrial DNA from African elephant ivory: a tool for monitoring the ivory trade. Conserv Biol 17:1840-1843.
Comstock KE, Ostrander EA, Wasser SK. 2003. Amplifying nuclear and mitochondrial DNA from African elephant ivory: a tool for monitoring the ivory trade. Conserv Biol 17:1840-1843.
Cummins J. 1998. Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172-182.
Cushwa WT, Medrano JF. 1996. Applications of the Random Amplified Polymorphic DNA (RAPD) Assay for Genetic Analysis of Livestock Species. Anim Biotech 7:11-31.
Czesny S, Dabrowski K, Christensen JE, van Eenennaam J, Doroshov S. 2000. Discrimination of wild and domestic origin of sturgeon ova based on lipids and fatty acid analysis. Aquaculture 189:145-153.
Dalmasso A, Fontanella E, Piatti P, Civera T, Rosati S, Bottero MT. 2004. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol Cell Probes 18:81-87.
DeSalle R, Birstein V. 1996. PCR identification of black caviar. Nature 381;197-198
Di Rago JP, Netter P, Slonimski PP. 1990. Pseudo-wild type revertants from inactive apocytochrome b mutants as a tool for the analysis of the structure/function relationships of the mitochondrial ubiquinol-cytochrome c reductase of Saccharomyces cerevisiae. J Biol Chem 265: 3332-3339.
Droge M, Puhler A, Selbitschka W. 1998. Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64:75-90.
Edwards SV, Arctander P, Wilson AC. 1991. Mitochondrial resolution of a deep branch in the genealogical tree for perching birds. Proc Biol Sci 243:99-107.
Espinoza EO, Lindley NC, Gordon KM, Ekhoff JA, Kirms MA. 1999. Electrospray ionization mass spectrometric analysis of blood for differentiation of species. Anal Biochem 268:252-261.
Esposti MD, De Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochim Biophys Acta 1143:243-271.
Esteve-Romero JS, Yman IM, Bossi A, Righetti PG. 1996. Fish species identification by isoelectric focusing of parvalbumins in immobilized pH gradients. Electrophoresis 17:1380-1385.
Etienne M, Jerome M, Fleurence J, Rehbein H, Kundiger R, Yman IM, Ferm M, Craig A, Mackie I, Jessen F, Smelt A, Luten J. 1999. A standardized method of identification of raw and heat-processed fish by urea isoelectric focusing: a collaborative study. Electrophoresis 20:1923-1933.
Farias IP, Orti G, Sampaio I, Schneider H, Meyer A. 2001. The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. J Mol Evol 53:89-103.
Fawcett NC, Evans JA, Chien LC, Flowers N. 1988. Nucleic-acid hybridization detected by piezoelectric resonance. Anal Lett 21:1099-1114.
Forrest AR, Carnegie PR. 1994. Identification of gourmet meat using FINS (forensically informative nucleotide sequencing). Biotechniques 17:24, 26.
Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C. 1989. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497-516.
Gamberoni C, Colombo G, Aspesi M, Mascheroni C, Severgnini P, Minora G, Pelosi P, Chiaranda M. 2002. Respiratory mechanics in brain injured patients. Minerva Anestesiol 68:291-296.
Girish PS, Anjaneyulu ASR, Viswas KN, Anand M, Rajkumar N, Shivakumar BM, Bhaskar S. 2004. Sequence analysis of mitochondrial 12S rRNA gene can identify meat species. Meat Sci 66:551-556.
Gonzalez SF, Krug MJ, Nielsen ME, Santos Y, Call DR. 2004. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol 42:1414-1419.
Hails RS. 2000. Genetically modified plants - the debate continues. Trends in Ecology and Evolution 15:14-18.
Hammond HA, Jin L, Zhong Y, Caskey CT, Chakraborty R. 1994. Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am J Hum Genet 55:175-189.
Harrison RG. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4:6-11.
Hatefi Y. 1985. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015-1069.
Hayashi J, Tagashira Y, Yoshida MC. 1985. Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Exp Cell Res 160:387-395.
Herman BL. 2001. Determination of the animal origin of raw food by species-specific PCR. J Dairy Res 68:429-436.
Hillis DM, Moritz C, Mable B. 1996. Molecular Systematics. Sinauer Associates, Inc., Massachusetts. USA.
Hoelzel AR. 2001. Shark fishing in fin soup. Conserv Genet 2:69-72.
Howell N, Gilbert K. 1988. Mutational analysis of the mouse mitochondrial cytochrome b gene. J Mol Biol 203: 607-618.
Howell N. 1989. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J Mol Evol 29:157-169.
Hsieh HM, Huang LH, Tsai LC, Kuo YC, Meng HH, Linacre A, Lee JC. 2003. Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int 136: 1-11.
Hughes TR, Shoemaker DD. 2001. DNA microarrays for expression profiling. Curr Opin Chem Biol 5:21-25.
Hurst LD, Atlan A, Bengtsson BO. 1996. Genetic conflicts. Q Rev Biol 71:317-364.
Irwin DM, Kocher TD, Wilson AC. 1991. Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128-144.
James C. 2001. Global Status of Commercialized Transgenic Crops: 2001, No. 24. ISAAA Briefs, ISAAA, Ithaca, NY.
Jeffreys AJ, Wilson V, Thein SL. 1985a. Hypervariable 'minisatellite' regions in human DNA. Nature 314:67-73.
Jeffreys AJ, Wilson V, Thein SL. 1985b. Individual-specific 'fingerprints' of human DNA. Nature 316:76-79.
Jerome M, Lemaire C, Verrez-Bagnis V, Etienne M. 2003. Direct sequencing method for species identification of canned sardine and sardine-type products. J Agric Food Chem 51:7326-7332.
Kenyon L, Moraes CT. 1997. Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids. Proc Natl Acad Sci USA 94:9131-9135.
Kirchman JJ, Whittingham LA, Sheldon FH. 2000. Relationships among cave swallow populations (Petrochelidon fulva) determined by comparisons of microsatellite and cytochrome b data. Mol Phylogenet Evol 14:107-121.
Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196-6200.
Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196-6200.
Kocher TD, White TJ. 1989. Evolutionary analysis via PCR. In: Erlich HA (ed). PCR Technology: Principles and Applications for DNA Amplification. Stockton Press, New York, pp.137-47.
Koh MC, Lim CH, Chua SB, Chew ST, Phang STW. 1998. Random amplified polymorphic DNA (RAPD) fingerprints for identification of red meat animal species. Meat Sci 48:275-285.
Koh MC, Lim CH, Chua SB, Chew ST, Phang STW. 1998. Random Amplified Polymorphic DNA (RAPD) Fingerprints for Identification of Red Meat Animal Species. Meat Sci 48:275-285.
Krajewski C, Driskell AC, Baverstock PR, Braun MJ. 1992. Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: evidence from cytochrome b DNA sequences. Proc Biol Sci 250:19-27.
Krcmar P, Rencova E. 2003. Identification of species-specific DNA in feedstuffs. J Agric Food Chem 51:7655-7658.
Kumazawa Y, Nishida M. 2000. Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol Biol Evol 17:1869-1878.
Lansman RA, Avise JC, Huettel MD. 1983. Critical experimental test of the possibility of "paternal leakage" of mitochondrial DNA. Proc Natl Acad Sci USA 80:1969-1971.
Lee JC, Chang JG. 1994. Random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) fingerprints in forensic species identification. Forensic Sci Int 67:103-107.
Legrand B, Mazancourt P, Durigon M, Khalifat V, Crainic K. 2002. DNA genotyping of unbuffered formalin fixed paraffin embedded tissues. Forensic Sci Int 125:205-211.
Levin BC, Cheng H, Reeder DJ. 1999. A human mitochondrial DNA standard reference material for quality control in forensic identification, medical diagnosis, and mutation detection. Genomics 55:135-146.
Lindroos K, Liljedahl U, Raitio M, Syvanen AC. 2001. Minisequencing on oligonucleotide microarrays: comparison of immobilisation chemistries. Nucl Acids Res 29:E69-69.
Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675-1680.
Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J. 1995. Molecular Cell Biology (3rd Edn) W.H. Freeman and Company, New York.
Long EO, Dawid IB. 1980. Repeated genes in eukaryotes. Annu Rev Biochem 49:727-764.
Losey JE, Rayor LS, Carter ME. 1999. Transgenic pollen harms monarch larvae. Nature 399:214.
Lovejoy NR, De Araujo ML. 2000. Molecular systematics, biogeography and population structure of neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol Ecol 9:259-268.
Lydeard C, Roe KJ. 1997. The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among Actinopterygian fishes. In: Kocher TD, Stepien CA (eds). Molecular systematics of fish. Academic Press, New York, pp.285-303.
Manel S, Berthier P, Luikart G. 2002. Detecting wildlife poaching: identifiying the origin of individuals with Bayesian assignment test and multilocus genotypes. Conserv Biol 16:650-659.
Martinez I, Malmheden Yman I. 1999. Species Identification in Meat Products by RAPD Analysis. Food Res Int 31:459-466.
Marx KA. 2003. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4:1099-1120.
Matsunaga T, Chikuni K, Tanabe R, Muroya S, Nakai H, Shibata K, Yamada J, Shinmura Y. 1998. Determination of mitochondrial cytochrome b gene sequence for red deer (Cervus elaphus) and the differentiation of closely related deer meats. Meat Sci 49:379-385.
Maudet C, Taberlet P. 2001. Detection of cows' milk in goats' cheeses inferred from mitochondrial DNA polymorphism. J Dairy Res 68:229-235.
McCormick RJ, Collins DA, Field RA, Moore TD. 1992. Identification of meat from game and domestic species. J Food Sci 57:516-517.
McManus DP, Le TH, Blair D. 2004. Genomics of parasitic flatworms. Int J Parasitol 34:153-158.
Meyer A, Wilson AC. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 31:359-364.
Meyer A. 1993. Evolution of mitochondrial DNA in fishes. In: Hochachka PW, Mommsen TP (eds). Biochemistry andmolecular biology of fishes. Molecular biology frontiers. Elsevier, Amsterdam, pp.1-38.
Meyer R, Hofelein C, Luthy J, Candrian U. 1995. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Int 78:1542-1551.
Mindell DP, Honeycutt RL. 1990. Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu Rev Ecol Syst 21:541-566.
Minunni M, Tombelli S, Pratesi S, Mascini M, Piatti P, Bogani P, Buiatti M, Mascini M. 2001. A piezoelectric affinity biosensor for genetically modified organisms (GMOs) detection. Anal Lett 34:825-840.
Miyamoto MM, Boyle SM. 1989. The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer K, Jornvall H (eds). The hierarchy of life. Elsevier, Amsterdam, pp.437-450.
Moore MK, Bemiss JA, Rice SM, Quattro JM, Woodley CM. 2003. Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species. Conserv Genet 4:95-103.
Moore MK, Bemiss JA, Rice SM, Quattro JM, Woodley CM. 2003. Use of Restriction Fragment Length Polymorphisms to Identify Sea Turtle Eggs and Cooked Meats to Species. Conserv Genet 4:95-103.
Nagao Y, Totsuka Y, Atomi Y, Kaneda H, Lindahl KF, Imai H, Yonekawa H. 1998. Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet Syst 73:21-27.
Navajas M, Fenton B. 2000. The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751-774.
Naylor GJ, Brown WM. 1998. Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst Biol 47:61-76.
Normark BB, McCune AR, Harrison RG. 1991. Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol Biol Evol 8:819-834.
Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L. 1998. Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184-188.
Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY, Haugland RP. 1999. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179-1188.
Pascal G, Mahe S. 2001. Identity, traceability, acceptability and substantial equivalence of food. Cell Mol Biol (Noisy-le-grand) 47:1329-1342.
Pfunder M, Holzgang O, Frey JE. 2004. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol Ecol 13:1277-1286.
Pikó L, Matsumoto L. 1976. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol 49:1-10.
Pineiro C, Barros-Vela`zquez J, Perez-Martin RI, Gallardo JM. 2000. Specific enzyme detection following isoelectric focusing as a complementary tool for the differentiation of related Gadoid fish species. Food Chem 70:241-245.
Poyton RO, McEwen JE. 1996. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563-607.
Proudnikov D, Timofeev E, Mirzabekov A. 1998. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips. Anal Biochem 259:34-41.
Rao KB, Bhat KV, Totey SM. 1996. Detection of species-specific genetic markers in farm animals through random amplified polymorphic DNA (RAPD). Genet Anal 13:135-138.
Rea S, Chikuni K, Avellini P. 1996. Possibility of using single strand conformation polymorphism (SSCP) analysis for discriminating european pig and wild boar meat samples. J Food Sci 3:211-220.
Rea S, Chikuni K, Avellini P. 1996. Possibility of Using Single Strand Conformation Polymorphism (SSCP) Analysis for Discriminating European Pig and Wild Boar Meat Samples. J Food Sci 3:211-220.
Rehbein H, Etienne M, Jerome M, Hattula T, Knudsen L.B, Jessen F, Luten JB, Bouquet W, Mackie IM, Ritchie AH, Martin R, Mendes R. 1995. Influence of variation in methodology on the reliability of the isoelectric focusing method of fish species identification. Food Chem 52:193-197.
Rehbein H. 1990. Electrophoretic techniques for species identification of fishery products. Z Lebensm Unters Forsch 191:1-10.
Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J. 2002. Optimization of oligonucleotide-based DNA microarrays. Nucl Acids Res 30:e51.
Reynolds R, Sensabaugh G, Blake E. 1991. Analysis of genetic markers in forensic DNA samples using the polymerase chain reaction. Anal Chem 63:2-15.
Rocha-Olivares A, Rosenblatt RH, Vetter RD. 1999. Molecular evolution, systematics, and zoogeography of the rockfish subgenus Sebastomus (Sebastes, Scorpaenidae) based on mitochondrial cytochrome b and control region sequences. Mol Phylogenet Evol 11:441-458.
Rodriguez MA, Garcia T, Gonzalez I, Asensio L, Mayoral B, Lopez-Calleja I, Hernandez PE, Martin R. 2003. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction. J Agric Food Chem 51:1524-1529.
Sa´ez R, Sanz Y, Toldra´ F. 2004. PCR-based fingerprinting techniques for rapid detection of animal species in meat products. Meat Sci 66:659-665.
Schena M. 2000. Microarray Biochip Technology. Eaton Publishing, Natick, MA.
Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR, Lockhart DJ, Church GM. 2000. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 18:1262-1268.
Shadel GS, Clayton DA. 1997. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409-435.
Simon C, Paabo S, Kocher TD, Wilson AC. Evolution of mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction. In Molecular Evolution, M. Clegg and S. Clark (eds). UCLA Symposia on Molecular and Cellular Biology, New Series 122:235-244.
Southern E, Mir K, Shchepinov M. 1999. Molecular interactions on microarrays. Nat Genet 21:5-9.
Storri S, Santoni T, Minunni M, Mascini M. 1998. Surface modifications for the development of piezoimmunosensors. Biosens Bioelectron 13:347-357.
Sturmbauer C, Meyer A. 1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358:578-581.
Sun YL, Lin CS. 2003. Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine, and bovine meats. J Agric Food Chem 51:1771-1776.
Taylor AJ, Linforth RS, Weir O, Hutton T, Green B. 1993. Potential of electrospray mass spectrometry for meat identification. Meat Sci 33:75-83.
Terol J, Mascarell R, Fernandez-Pedrosa V, Perez-Alonso M. 2002. Statistical validation of the identification of tuna species: bootstrap analysis of mitochondrial DNA sequences. J Agric Food Chem 50:963-969.
Thomas WK, Maa J, Wilson AC. 1989. Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. New Biol 1:93-100.
Tombelli S, Mascini M. 2000. Piezoelectric quartz crystal biosensors:recent immobilisation schemes. Anal Lett 33:2129-2151.
Tsigenopoulos CS, Berrebi P. 2000. Molecular phylogeny of north mediterranean freshwater barbs (genus Barbus: cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications. Mol Phylogenet Evol 14:165-179.
Unseld M, Beyermann B, Brandt P, Hiesel R. 1995. Identification of the species origin of highly processed meat products by mitochondrial DNA sequences. PCR Methods Appl 4:241-243.
Van de Peer Y, De Wachter R. 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J Mol Evol 45:619-630.
Vawter L, Brown WM. 1986. Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194-196.
Verkaar ELC, Nijman IJ, Boutaga K, Lenstra JA. 2002. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Sci 60:365-369.
Verma SK, Prasad K, Nagesh N, Sultana M, Singh L. 2003. Was elusive carnivore a panther? DNA typing of faeces reveals the mystery. Forensic Sci Int 137:16-20.
Vollenhofer S, Burg K, Schmidt J, Kroath H. 1999. Genetically modified organisms in food-screening and specific detection by polymerase chain reaction. J Agric Food Chem 47:5038-5043.
Wallace DC. 1997. Mitochondrial DNA in aging and disease. Sci Am 277:40-47.
Wan QH, Fang SG. 2003. Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int 131:75-78.
Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL. 2002. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 99:15687-15692.
Waye J. 2000. DNA: RFLP. In: Siegel JA, Saukko PJ, Knupfer GC (ed). Encyclopedia of forensic sciences. London, Academic Press.
Welsh J, McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213-7218.
Wetton JH, Tsang CS, Roney CA, Spriggs AC. 2004. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int 140:139-145.
Wetton JH, Tsang CS, Roney CA, Spriggs AC. 2004. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int 140:139-145.
White TJ, Arnheim N, Erlich HA. 1989. The polymerase chain reaction. Trends Genet 5:185-189.
Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc Lond 26:375-400.
Wilson AC, Zimmer EA, Prager EM, Kocher TD. 1989. Restriction mapping in the molecular systematics of mammals: a retrospective salute In: Fernholm B. and Bremer K (eds). The Hierarchy of Life: Molecules and Morphology in Phylogenetic Analysis. Elsevier Press, Amsterdam, pp.407-419.
Wolf C, Rentsch J, Hubner P. 1999. PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J Agric Food Chem 47:1350-1355.
Xu X, Li Y, Zhao H, Wen SY, Wang SQ, Huang J, Huang KL, Luo YB. 2005. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray. J Agric Food Chem 53:3789-3794.
Xu X, Li Y, Zhao H, Wen SY, Wang SQ, Huang J, Huang KL, Luo YB. 2005. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray. J Agric Food Chem 53:3789-3794.
Yan P, Wu XB, Shi Y, Gu CM, Wang RP, Wang CL. 2005. Identification of Chinese alligators (Alligator sinensis) meat by diagnostic PCR of the mitochondrial cytochrome b gene. Biol Conserv 121:45-51.
Zardoya R, Cao Y, Hasegawa M, Meyer A. 1998. Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Mol Biol Evol 15:506-517.
Zardoya R, Meyer A. 1996. Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. Proc Natl Acad Sci USA 93:5449-5454.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top