跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建智
研究生(外文):Jian-Zhi Huang
論文名稱:可調變電流畫素電路應用在非晶矽薄膜電晶體主動式矩陣有機發光二極體顯示器
論文名稱(外文):Adaptive Current Scaling Pixel Circuit for a-Si:H TFT AMOLED Displays
指導教授:鄭惟中鄭惟中引用關係謝漢萍謝漢萍引用關係
指導教授(外文):Wei-Chung ChengHan-Ping D. Shieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:畫素電路電流源驅動薄膜電晶體電流調變
外文關鍵詞:Pixel circuitCurrent driving schemeThin film transistorCurrent scaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
主動式矩陣有機發光二極體電流源畫素電路之瓶頸,在於顯示低灰階畫面時充電時間過長導致驅動資料的錯誤。本論文提出一種創新可調變電流畫素電路設計,利用儲存電容串接結構,來達到電流可調變的功效以縮短充電時間,同時不減少畫素的開口率。
根據數值分析與實驗的結果,若與傳統的電流源驅動畫素電路做比較,當顯示亮度為100 和 20 cd/m2時,充電時間可分別縮短10.7 和13.7倍。此外,當輸入電流範圍為0.2 和10 μ情況之下,此一可調變電流畫素電路設計可達最大驅動電流範圍2 nA 和 5 μA。另一方面,此畫素電路設計中,當驅動電晶體的截止電壓變化為4.5 V時,輸出電流變化可壓縮至3.8 %。這些實驗結果,皆證實此一可調變電流畫素電路設計可縮短充電時間及補償元件特性變化,以達到主動式有機發光二極體顯示器高解析、大尺寸之需求。
The difficulty that current-driven pixel circuit of active matrix organic light emitting diode devices encounters lies in long charging time resulted in data programming error while displaying low gray level images. This thesis proposes an adaptive current scaling pixel circuit design, which utilizes the cascade structure of storage capacitors to achieve current scaling function without sacrificing aperture ratio so as to shorten the charging time.
By the analytical and experimental results, at display luminance of 100 and 20 cd/m2, the charging time can be shortened by a factor of 10.7 and 13.7, respectively; moreover, the driving current ranging from 2 nA to 5 μA can be obtained at programming current ranging from 0.2 to 10 μA. Besides, the variation of driving current can be suppressed to 3.8% while the threshold voltage variation of driving TFT is 4.5 V which evidently demonstrated shortening charging time and compensating the characteristic variations to fulfill the requirement of high resolution and large size AMOLED displays.
Abstract (Chinese).......................................i
Abstract (English)......................................ii
Acknowledgment.........................................iii
Table of Contents.......................................iv
Figure Captions.........................................vi
List of Tables..........................................ix

Chapter 1 Introduction .................................1
1.1 Thin Film Transistor For Active Matrix Addressing....1
1.2 Driving Mode.........................................2
1.2.1 Voltage-Driven Pixel Circuit.......................2
1.2.2 Current-Driven Pixel Circuit.......................3
1.3 Motivation and Objective of This Thesis..............4
1.4 Organization of This Thesis..........................5
Chapter 2 Principle.....................................6
2.1 Why Current Scaling Function.........................6
2.2 Current-Mirror Pixel Circuit.........................8
2.2.1 Addressing State...................................8
2.2.2 Non-Addressing State...............................8
2.3 Design of Adaptive Current Scaling Pixel Circuit....10
2.3.1 The Operation of Addressing State.................11
2.3.2 The Operation of Non-Addressing State.............12
2.4 Summary.............................................14
Chapter 3 Simulation Results and Discussions..........15
3.1 Simulation Premise..................................15
3.2 Simulation Results and Discussion...................17
3.2.1 Current Scaling Ratio.............................17
3.2.2 Programming Time..................................24
3.3 Summary.............................................26
Chapter 4 Fabrication and Measurement Instruments......27
4.1 a-Si:H TFT Fabrication Process......................27
4.2 Organic Light Emitting Diode Fabrication Process....28
4.3 Measurement System..................................29
4.3.1 Electrical Properties Analysis System.............30
4.3.2 Testing Circuitry Systems.........................31
4.4 ConoScope...........................................32
Chapter 5 Experimental Results and Discussion.........34
5.1 Electrical Characteristics..........................35
5.1.1 Current Scaling Ratio.............................35
5.2 Reliability.........................................48
5.2.1 BTS for TFT Device................................48
5.2.2 BTS for Current Scaling Pixel Circuit.............49
5.3 Single Pixel AMOLED Device..........................52
5.3.1 Solution of Glass Cutting by Laser................56
5.3.2 Solution of Short Circuit Problem.................56
5.4 Summary.............................................57
Chapter 6 Conclusions and Future Directions...........59
6.1 Conclusion..........................................59
6.2 Future Direction....................................60
Reference...............................................62
[1] C.W. Tang and S. Van Slyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett., Vol. 51, pp. 913, 1987.
[2] G. Gu and S.R. Forrest, “Design of Flat-Panel Displays Based on Organic Light Emitting Devices,” IEEE J. Sel. Topics Qun. Electronics, Vol. 4, pp. 83, 1998.
[3] E. I. Haskal, M. Buechel, J. F. Dijksman, P. C. Duineveld, E. A. Meulenkamp, C. A. H. A. Mutsaers, A. Sempel, P. Snijder, S. I. E. Vulto, P. van de Weijer, S. H. P. M. de Winter, “Ink Jet Printing of Passive-Matrix Polymer Light Emitting Displays ,” SID 2002, pp. 776, 2002.
[4] Y. Kijima, N. Asai, N. Kishii, and Tamura, “RGB Luminescence from Passive-Matrix Organic LED’s,” IEEE Trans. Electron Devices, Vol. 44, pp.1222, Aug. 1997.
[5] T. Tohma, “Recent progress in Development of Organic Electroluminescent Display Devices,” in Int. Display Research conference (IDRC) Dig. Tech. Papers, 1997, F1.1.
[6] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, “Comparison of a-Si and Poly-Si for AMOLEDs,” SID 04 DIGEST, pp.1504, 2003.
[7] Z. Meng, H. S. Kwok and M. Wong, “Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistor Technology for Active-Matrix Organic Light-Emitting Diode Displays with Reduced Susceptibility to Cross-Talk,” SID 02 Digest, pp.976, 2002.
[8] J.H. Kim and J. Kanicki, “200 dpi 3-a-Si:H TFTs Voltage-Driven AM-PLEDs,” SID 03 Digest, pp.18, 2003.
[9] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura and T. Urabe, “A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC),” SID 01 DIGEST, pp.384-386, 2001.
[10] Y. He, R. Hattori, and J. Kanicki, “Current-Source a–Si:H Thin-Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays,” in IEEE Electron Device Lett., vol. 21, no. 12, pp. 590-592, 2000.
[11] Y. He, R. Hattori, and J. Kanicki, “Improved A-Si:H TFT pixel electrode circuits for active-matrix organic light emitting displays,” in IEEE Trans. Electron Devices, vol. 48, no. 7, Jul, pp. 1322-1325, 2001.
[12] Y. Hong, J. Y. Nahm and J. Kanicki, “200 dpi 4-a-Si TFTs Current-Driven AM-PLEDs,” SID 03 Digest, pp.22-25, 2003.
[13] A. Nathan, S. Alexander, K. Sakariya, P. Servati, S. Tao, D. Striakhilev, A. Kumar ,S. Sambandan, S. Jafarabadiashtiani, Y. Vigranenko ,C. Church, J. Wzorek, P. Arsenault “Extreme AMOLED Backplanes in a-Si with Proven Stability ,” SID 04 Digest, pp.1508-1511, 2003.
[14] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee and M. K. Han, “A New a-Si TFT Pixel Design Compensating Threshold Voltage Degradation of TFT and OLED,” SID 04 Digest, pp.264-267, 2003.
[15] J. C. Goh, C. K. Kim and Jin Jang, “A New Pixel Design for Amorphous-Silicon Backplane of Active Matrix Organic Light-Emitting Diode Displays,” SID 04 Digest, pp.276-279, 2004.
[16] J. kanicki, J. H. Kim, J. Y. Nahm, Y. He, and R. Hattori, “Amorphous Silicon Thin Film Transistors Based Active Matrix Organic Light Emitting Display,” IDW 01, pp.315-318, 2001.
[17] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395-1398, 2001.
[18] J. Lee, W. Nam, S. Jung, and M. Han, “A New Current Scaling Pixel Circuit for AMOLED,” in IEEE Electron Device Lett., vol. 25, no. 5, May 2004, pp. 280-282, 2004.
[19] Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “A Novel Current-Scaling a-Si:H TFTs Pixel Electrode Circuit for Active-Matrix Organic Light-Emitting Displays,” in IEEE Elec. Dev. Trans., vol. 52, pp. 1123-1131, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top