跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱國基
研究生(外文):Kuo-Chi Chiu
論文名稱:多極磁性元件之設計與製作在高精密定位系統之應用
論文名稱(外文):Design and Fabrication of Multi-Pole Magnetic Components for High Precision Position System Application
指導教授:謝漢萍謝漢萍引用關係黃得瑞黃得瑞引用關係
指導教授(外文):Han-Ping ShiehDer-Ray Huang
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:96
中文關鍵詞:磁性編碼器印刷電路板磁極距充磁
外文關鍵詞:Magnetic encoderPCB (Printed circuit board)Magnetic pole pitchMagnetization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:541
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
時序進入微米及次微米的時代,並已投入對奈米尺寸的技術開發,各種量測儀器的精密度不斷地被要求提升以符合所需。由於編碼器是精密量測系統中不可或缺的關鍵元件,因此開發一個小尺寸具有高解析度的編碼器,來增進量測系統的功能為一重要的基本研究。一般而言,編碼器可分為兩類,一為光學式,利用光反射或是透射的特性,造成光線明暗的效果,來作為偵測的訊號;另一為磁性式,藉由磁性南極與北極的差異,來作為檢測的訊號。
磁性編碼器是由一個磁性感測器,以及一個多極磁性元件具有微小磁極距所組成,解析度的高低由磁極距的大小所決定。使用傳統的方法,要製作出磁極距小於1mm是非常困難的,精密的機械加工技術以及昂貴且複雜的充磁系統是必備的條件。為了克服製作微小磁極距小於1mm,來提升磁性編碼器的解析能力,本論文所提出的創新方法,是利用印刷電路板的製程技術,來製作出一特殊的線路圖形於基板上,具有均勻的磁極結構,依據安培定律,在供給線路電流之後,便會感應產生出交錯且規則的磁場分佈,從而獲得一多極磁性元件具有微小磁極距。
為了量測此微小磁極距的磁場分佈,我們設計製作出一個精密的磁場量測系統,使用高解析度的霍爾探棒,其感測面積只有165�e165�慆2,因此可以量測出微小磁極距小於1mm。不同多極磁性元件具有微小磁極距300�慆、350�慆和400�慆,已成功製作出來,同時也量測出其表面上方200�慆與300�慆處的磁場分佈變化,清楚的磁性邊界顯示出此微小磁極距的大小,分別為300�慆、350�慆和400�慆。因此,磁性編碼器的解析能力可以大幅地提升3.33倍 (1mm/300�慆)。此外,利用有限函數疊加計算微小磁極距內之磁場公式也已經推導出來,理論計算的數值與實驗量測的結果有很好的一致性。
另外,藉由使用雙層的線路結構,可以將其微弱的磁場強度有效地提升1.37倍。再者,在磁場最佳化的研究中,使用不同的線路寬度190�慆與235�慆,其所對應出來的最佳磁極距大小為465�慆與495�慆,相較於其他尺寸的磁極距,具有較大的磁場強度與變化,上述這些特性是非常有助於後續訊號的檢測與處理。印刷電路板的製程技術已經驗證可以有效地縮減磁極距小於1mm,不需要精密的機械加工技術,以及昂貴複雜的充磁系統,而且大量生產很容易,不同磁極數目與磁極距尺寸也可以輕易的完成於基板上。
Micro-, submicro- and nano-related industries have been growing rapidly in recent years. The technologies of precise measurements thus become increasingly more demanding. Since encoders are the key component in precise control systems, developing a high-resolution and small-sized encoder is essential to enable the systems more competitive in performance and price.
Encoders can be classified into optical and magnetic types. The optical type uses the light reflection or transmission as the detection signals. The magnetic type utilizes magnetic south and north poles as the sensing sources. A magnetic encoder comprises a magnetic sensor and a multi-pole magnetic component with a fine magnetic pole pitch. A smaller magnetic pole pitch yields a higher resolution in applications. Using traditional methods, a multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1mm is very difficult to achieve. Moreover, it requires a precise mechanical processing and a complicated magnetization system.
In order to overcome the limitation of 1mm in fabricating the magnetic pole pitch, an innovative method by using the printed circuit board (PCB) technology was employed. A special wire circuit pattern was designed and fabricated on the PCB with a periodic structure. According to Ampere’s Law, an alternate and regular magnetic field distribution is induced after applying a current to the wire circuit. Thus, a multi-pole magnetic component with a fine magnetic pole pitch is obtained.
Additionally, a precise magnetic field measuring system was designed and set up to measure the field distribution in the fine magnetic pole pitch. A high-sensitivity Hall-effect probe with a fine sensing area of 165�e165�慆2 was used and therefore it is capable of determining the field distribution with a fine magnetic pole pitch of less than 1mm. Various multi-pole magnetic components with different magnetic pole pitches of 300�慆, 350�慆 and 400�慆 were accomplished. The field distributions were measured at the detection spacing of 200�慆 and 300�慆 above the surface of the wire circuit. The explicit boundaries between magnetic poles are found, indicating the fine magnetic pole pitches are 300�慆, 350�慆 and 400�慆, respectively. Correspondingly, the resolution of magnetic encoders can be markedly improved by a factor of 3.33 (1mm/300�慆). Moreover, the field formulae for computing the field distribution in the fine magnetic pole pitch have been also derived. These field solutions are expressed in terms of finite sums of elementary functions and easily implemented in any programming environments. As a comparison, the calculated values of magnetic flux density in the z direction agree with the measurement data.
A dual-layered wire circuit structure was used to improve the field strength. After measurements, a gain factor of 1.37 was obtained in the field enhancement. Furthermore, various wire widths of 190�慆 and 235�慆 were used to investigate the field optimization and the corresponding optimal magnetic pole pitches are 465�慆 and 495�慆. Such an optimal design has larger strength and steeper variation in the field distribution. Both of them are useful to the signal detection and processing.
PCB manufacturing technology has been demonstrated to effectively fabricate a multi-pole magnetic component with a fine magnetic pole pitch to be less than 1mm. This innovative method provides a simple process without using the complicated technologies such as machining technique, magnetizing head and magnetization machine. Additionally, it is also a cost-effective method to enable mass production easily. Different pole numbers and pitch sizes can be also easily fabricated on the PCB through this flexible approach.
Chapter 1
Introduction 1
1.1 Overview of encoders 1
1.2 Optical encoder 2
1.3 Magnetic encoder 3
1.4 A review of magnetic encoders related technologies 4
1.4.1 Linear types of multi-pole magnetic components 5
1.4.2 Rotary types of multi-pole magnetic components 8
1.4.3 Summary 13
1.5 Motivation and objective of this dissertation 14
1.6 Organization of this dissertation 15

Chapter 2
Design and fabrication 17
2.1 Introduction 17
2.2 Design 21
2.3 Fabrication 23
2.3.1 Drawing 23
2.3.2 Wire circuit manufacturing process 25
2.4 Summary 28
Chapter 3
Theoretical analysis 29
3.1 Long and straight wire 29
3.2 Straight wire with a finite length L 30
3.2.1 Point P located outside the straight wire 30
3.2.2 Point P loacted along the bisection line of the straight wire 32
3.2.3 Point P located at the upper position of the straight wire 33
3.2.4 Point P located at the lower position of the straight wire 34
3.3 Two-dimensional analysis 34
3.4 Three-dimensional analysis 36
3.5 Field analysis 37
3.5.1 At Area 1 39
3.5.2 At Area 2 39
3.5.3 At the top side of Area 3 40
3.5.4 At the bottom side of Area 3 41
3.5.5 At the top side of Area 4 42
3.5.6 At the bottom side of Area 4 43
3.5.7 At Area 5 44
3.5.8 At the left side of Area 6 45
3.5.9 At the right side of Area 6 45
3.6 Summary 48

Chapter 4
Field measurements 50
4.1 Dimensional measurements 50
4.2 Magnetic field measuring system 53
4.3 Measurement results 55
4.4 Summary 60

Chapter 5
Field enhancement and optimization 61
5.1 Field enhancement 61
5.1.1 Design and experiments 61
5.1.2 Results and discussions 63
5.1.3 Summary 66
5.2 Field optimization 67
5.2.1 Design and experiments 67
5.2.2 Results and discussions 69
5.2.3 Summary 71

Chapter 6
Field variation analysis 72
6.1 Variation among different multi-pole magnetic components 72
6.2 Variation along different measuring routes 73
6.3 Summary 77

Chapter 7
Conclusions 78

References 82

Appendix 86
[1] K. Mohri, K. Yoshino, H. Okuda, R. Malmhall, “Highly accurate rotation-angle sensors using amorphous star-shaped cores”, IEEE Trans. Magn. Vol. 22, (1986) 409-411.
[2] K. Miyashita, T. Takahashi, M. Yamanaka, “Features of a magnetic rotary encoder”, IEEE Trans. Magn., Vol. 23, (1987) 2182 2184.
[3] H. Okuno, M. Ishikawa, Y. Sakaki, “Properties of SmCo film for magnetic rotary encoder”, IEEE Trans. Magn., Vol. 23, (1987) 2425 2427.
[4] P. Campbell, “Magnetic rotary position encoders with magneto-resistive sensors”, Proceedings of Fourth International Conference on Electrical Machines and Drives, Sep. 13-15, (1989) 359-363.
[5] T. Mikoshiba, K. Yamasawa, “A new non-repeated code type magnetic scale using a simple absolute head”, IEEE Trans. Magn. Vol. 32, (1996) 4938-4940.
[6] Y. Kikuchi, F. Nakamura, H. Wakiwaka, H. Yamada, Y. Yamamoto, “Consideration for a high resolution of magnetic rotary encoder”, IEEE Trans. Magn. Vol. 32, (1996) 4959-4961.
[7] Y. Kikuchi, F. Nakamura, H. Wakiwaka, H. Yamada, J. Yamamoto, “Consideration of magnetization and detection on magnetic rotary encoder using finite element method”, IEEE Trans. Magn. Vol. 33, (1997) 2159-2162.
[8] Y. Kikuchi, F. Nakamura, H. Wakiwaka, H. Yamada, H, “Index phase output characteristics of magnetic rotary encoder using a magneto-resistive element”, IEEE Trans. Magn. Vol. 32, (1997) 3370-3372.
[9] 游志榮, “磁性編碼器磁環充磁機原型設計、製作及測試”, 國立中央大學/機械工程研究所, (84級) 碩士論文.
[10] 莊俊良, “磁性編碼器之磁環分析與模擬”, 國立中央大學/機械工程研究所, (85級) 碩士論文.
[11] 賴坤奇, “磁性編碼器原型製作、測試”, 國立中央大學/機械工程研究所, (86級) 碩士論文.
[12] 林江清等, “磁性編碼器研製技術報告(一)”, 工業技術研究院/工業材料研究所, (1996) 技術報告.
[13] 林江清等, “磁性編碼器研製技術報告(二)”, 工業技術研究院/工業材料研究所, (1997) 技術報告.
[14] 羅應照等, “磁氣式回轉速度檢出磁石充磁設計規畫書”, 工業技術研究院/機械工業研究所, (1995) 技術報告.
[15] 黃世民等, “磁氣式回轉速度檢出磁石充磁驗證規畫書”, 工業技術研究院/機械工業研究所, (1995) 技術報告.
[16] 羅應照等, “磁氣式回轉速度檢出磁石充磁應用維護說明”, 工業技術研究院/機械工業研究所, (1995) 技術報告.
[17] 翁明輝, “線性尺千倍頻電路設計”, 國立中央大學/機械工程研究所, (87級) 碩士論文.
[18] 翁明輝等, “線性磁性定位伺服系統電路設計”, 工業技術研究院/光電工業研究所, (1998) 技術報告.
[19] 陳建祥等, “直線型分解式位置控制系統電路設計”, 工業技術研究院/光電工業研究所, (1999) 技術報告.
[20] http://www.magnix.com/product/magne-sheet.html, the website of Toyo Jiki Industry Co., LTD.
[21] http://www.magnetizer.com.tw/p9.htm, the website of Ney Hwu Electrical Co., LTD.
[22] Y. Kikuchi, T. Yoneda, Y. Kataoka, K. Shiotani, H. Wakiwaka, H. Yamada, “Considerations of output voltage waveform on magnetic linear encoder for artificial heart using linear pulse motor”, Sens. Actuator A-Phys. 81, (2000) 309-312.
[23] Ashok K. Agarwala, “Method of magnetizing high energy rare earth alloy magnets”, USA Patent Number 4,920,326 (1990).
[24] Svetlana Reznik, Edward P. Furlani, William E. Schmidtmann, “Apparatus for polarizing rare-earth permanent magnets”, USA Patent Number 5,852,393 (1998).
[25] Y. J. Luo, E. T. Hwang, S. M. Huang, “Multi-pole magnetization of high resolution magnetic encoder”, Proceedings, EEIC/ICWA Exposition, Chicago, USA, Oct. 4-7, (1993) 237 242.
[26] P. Lorrain et al., Electromagnetic Fields And Waves, W. H. Freeman Company, New York, 3rd Ed., 1988, p. 330.
[27] P. Lorrain et al., Electromagnetic Fields And Waves, W. H. Freeman Company, New York, 3rd Ed., 1988, p. 353-354.
[28] http://www.autodesk.com.tw/adsk/servlet/home?siteID=1170616&id=2501735, the website of Autodesk Company in Taipei branch.
[29] http://www.solidworks.com/, the website of SolidWorks Corporation.
[30] http://www.ptc.com/products/proe/wildfire/, the website of Parametric Technology Corporation.
[31] http://www.orcad.com/, the website of Cadence Design Systems Company.
[32] http://www.altium.com/protel/, the website of Altium Limited.
[33] http://www.mentor.com/pcb/, the website of Mentor Graphics Corporation.
[34] http://www.big5.tomshardware.com/howto/01q3/010814/index.html, the website of tom’s hardware guide.
[35] P. Lorrain et al., Electromagnetic Fields And Waves, W. H. Freeman Company, New York, 3rd Ed., 1988, pp. 327-328.
[36] P. Lorrain et al., Electromagnetic Fields And Waves, W. H. Freeman Company, New York, 3rd Ed., 1988, p. 330.
[37] Hsi-Huan Chen, Electromagnetism—Principles and Examples--, Central Book Company, Taiwan, 4th Ed., 1987, p. 868. (Publishing in Chinese)
[38] http://www.stindustries.com/index.html, the website of S-T Industries, Inc.
[39] http://www.magnix.com/product/gauss_ads.htm, the website of Toyojiki Industry Co., LTD.
[40] http://www.goodwill.com.tw/Products/GDM-391A_T.htm, the website of GOOD WILL INSTRUMENT CO., LTD.
[41] http://webbuilder.asiannet.com/325/style/content/CN-01a/product.asp?lang=1&customer_id=325&name_id=3454&rid=13885, the website of BURGEON INSTRUMENT CO., LTD.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 宋德忠、陳淑芬、張國恩(1998)。電腦化概念構圖系統在知識結構測量上的應用。中國測驗學會測驗年刊,45(2),37-56。
2. 余民寧、陳嘉成、潘雅芳(1996)。概念構圖法在測驗教學上的應用。測驗年刊,43,195-212。
3. 余民寧、陳嘉成、潘雅芳(1996)。概念構圖法在測驗教學上的應用。測驗年刊,43,195-212。
4. 余民寧、陳嘉成(1996)。概念構圖:另一種評量方法。國立政治大學學報,73,161-200。
5. 余民寧、陳嘉成(1996)。概念構圖:另一種評量方法。國立政治大學學報,73,161-200。
6. 余民寧、潘雅芳、林偉文(1996)。概念構圖法:合作學習抑個別學習。教育與心理研究,19,93-124。
7. 余民寧、潘雅芳、林偉文(1996)。概念構圖法:合作學習抑個別學習。教育與心理研究,19,93-124。
8. 吳裕聖、曾玉村(2003)。概念構圖教學策略對小五學生科學文章理解及概念構圖能力之影響。教育研究集刊,49(1),135-169。
9. 吳裕聖、曾玉村(2003)。概念構圖教學策略對小五學生科學文章理解及概念構圖能力之影響。教育研究集刊,49(1),135-169。
10. 江淑卿(1999)。圖解理解策略在學習輔導的運用─談如何提高中小學學生的理解力。學生輔導,62,8-19。
11. 江淑卿(1999)。圖解理解策略在學習輔導的運用─談如何提高中小學學生的理解力。學生輔導,62,8-19。
12. 王以仁(1991)。前導組體及其在教學上之運用。教師之友,33(3),10-13。
13. 王以仁(1991)。前導組體及其在教學上之運用。教師之友,33(3),10-13。
14. 王雅玄(1998)。建構主義理論與教學實證研究。人文及社會學科教學通訊,9(1),151-170。
15. 王雅玄(1998)。建構主義理論與教學實證研究。人文及社會學科教學通訊,9(1),151-170。