跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林螢聰
研究生(外文):Ying-Tsung Lin
論文名稱:飛秒高功率光固子壓縮自啟式加波鎖模掺鉺光纖雷射
論文名稱(外文):Femtosecond High-Power Soliton Compression of a Self-Started APM Erbium-Doped Fiber Laser
指導教授:林恭如
指導教授(外文):Gong-Ru Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:光固子效應壓縮摻鉺光纖放大器摻鉺光纖雷射單模光纖大有效面積光纖
外文關鍵詞:Soliton-Effect CompressionErbium-Doped Fiber AmplifierErbium-Doped Fiber LaserSingle-Mode FiberLarge-Effective-Area Fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本論文,是利用非線性光學中的光固子效應壓縮飛秒光纖雷射產生一個壓縮脈衝光。然而,利用光固子壓縮會造成脈衝品質的劣化,劣化的程度與光固子階數成正比;為了去改善光固子壓縮的缺點,我們提出了利用大模面積的高濃度掺鉺光纖來製作掺鉺光纖放大器,除了進一步縮短掺鉺光纖的長度之外,更使得脈衝在被放大過程中,所產生的非線性效應能夠達到最小化。而在脈衝被放大之前,我們利用單模光纖事先引入適當的負啾頻量,目的是要預先補償在放大的過程中所引入的正啾頻量,使脈衝在放大的過程中能夠連續地窄化。這樣的架構能夠降低光固子壓縮的階數與抑制底座的產生。另外,在放大之後,我們選擇一段最佳的單模光纖長度,擷取出在光固子效應下最窄的脈衝。利用這種設計可以獲得一個波形完整乾淨的壓縮脈衝,脈衝寬度為56飛秒,放大壓縮後的峰值功率為46千瓦。最後,為了更進一步縮短脈衝寬度,獲得更大的壓縮率,我們將單模光纖與大有效面積光纖結合成二階式的光固子壓縮,其脈衝寬度可由原始的300飛秒壓縮到30飛秒,而脈衝的峰值功率也得以有700倍以上的放大。
Femtosecond soliton effect compression is investigated to obtain pulses from passively mode-locked fiber lasers. Due to the inherent drawback of soliton-effect compression that the pulse quality Qc (defined as the energy ratio of the central pulse to total pulse) is decreasing monotonically from its ideal value of 1 as the soliton order N increases, we propose a new concept of using a simplified Erbium-doped fiber Amplifier (EDFA) based all-fiber compressor. A very short but highly-doped large-mode-field-area (LMFA) Er-doped fiber is employed to minimize the nonlinear process occurred during the high-power amplification of Erbium-doped fiber laser (EDFL) pulses. By using a pre-chirped single-mode fiber (SMF) segment for controlling the chirp of fiber laser pulse before launching into the Er-doped fiber and the last compression stage. Optimized pre-chirping, amplification and compression of the fiber laser pulse can be achieved under the fine adjustment on both the lengths of the SMF segments before and after the LMFA-EDFA. We primarily report that a 100% energy confinement within the central portion of the compressed soliton pulse is obtained, which exists a peak power of 46 kW and a pulsewidth of 56 fs. A additional compression stage is employed to further shorten the amplified EDFL pulsewidth and to achieve largest compression ratio, which combines the SMF and large-effective-area fiber (LEAF) to perform a dual-stage soliton compression link. As a result the pulsewidth shrinks from 300 fs to 30 fs associated with a maximum peak-power amplification ratio of >700.
CONTENTS

Page
Abstract (in Chinese) i
Abstract (in English) ii
Acknowledgement iii
Contents iv
List of Figures vi

Chapter 1 : Introduction
1.1 Short-Pulse Fiber Lasers 1
1.2 Fiber Lasers Pulse Compression 3
1.3 Motivation 5
1.4 Structure of this thesis 6
1.5 References 6
Chapter 2 : Principle of the Experiment
2.1 Principle of Self-started Additive Pulse Mode-Loking 11
2.1-1 Nonlinear Polarization Rotation 11
2.1-2 Stretched-pulse laser 12
2.2 Principle of Soliton-Effect Pulse Compression 13
2.2-1 Physical Mechanism 13
2.2-2 SPM-Induced Spectral Broadening 15
2.2-3 Soliton-Effect Compressors 17
2.2-4 Intrapulse Raman Scattering 19
2.3 References 20
Chapter 3 : Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation
3.1 Introduction 24
3.2 Experimental Setup 25
3.3 Results and Discussion 26
3.3.1 SMF Compression 27
3.3.2 LEAF Compression 28
3.3.3 SMF+LAEF Compression 28
3.4 Conclusions 30
3.5 References 30
Chapter 4 : 56-fs High-Power Pedestal-Free Gaussian-Shape Pulse Compression with a Pre-Chirped Large-Mode-Area Er-Doped Fiber Amplifier
4.1 Introduction 37
4.2 Design and Implementation of EDFL and LMFA-EDFA 39
4.3 Pre-chirped Amplification and Compressing Results 41
4.4 Comparisons of Previous Results and Our Work 43
4.5 Conclusion 44
4.6 References 45
Chapter 5 : Summary
5.1 Summary 52
5.2 Future work 53
Curriculum Vitae 54
Publication list 55
[1.1] A. E. Siegman, Lasers (University Science Books, Mill Valley, CA,1986)
[1.2] W. T. Silfvast, Laser Fundamentals (Cambridge University Press, New York, 1996)
[1.3] O. Svelto, Principles of Lasers, 4th ed. (Plenum, New York, 1998).
[1.4] L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable Single-Mode Fiber Lasers,” J. Lightwave Technol. LT-4, 956 (1986).
[1.5] C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 8, 976 (1999).
[1.6] J. M. Sousa and O. G. Okhotnikov, “Multiple wavelength Q-switched fiber laser,” IEEE Photon. Technol. Lett. 8, 1117 (1999).
[1.7] J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clark-son, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37 (2000).
[1.8] I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900 - 0.945 and 1.070 - 1.135 Mum,” Opt. Lett. 11, 709 (1986).
[1.9] I. N. Duling, L. Goldberg, and J. F. Weller, “High-power, mode-locked Nd:fibre laser pumped by an injection-locked diode array,” Electron. Lett. 24, 1333 (1988).
[1.10] M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259 (1997).
[1.11] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and I. P. Ippen, “Ultrashort-Pulse Fiber. Ring Lasers,” Appl. Phys. B 65, 277 (1997).
[1.12] J. D. Kafka, T. Baer, and D. W. Hall, “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett. 14,1269 (1989).
[1.13] A. Takada and H. Miyazawa, “30 GHz picosecond pulse generation from actively mode-locked erbium-doped fiber laser,” Electron. Lett. 26, 216 (1990).
[1.14] H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre lasers with an all-polarisation maintaining ring cavity,” Electron. Lett. 28, 2095 (1992).
[1.15] I. N. Duling Ⅲ, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539 (1991).
[1.16] M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073 (1991).
[1.17] T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141, 65 (1997).
[1.18] K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226 (1992).
[1.19] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080 (1993).
[1.20] L. F. Mollenauer, R. H. Stolen and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[1.21] J. T. Ong, R. Takahashi, M. Tsuchiya, S. H. Wong, R. T. Shara, Y. Ogawa and T. Kamiya, “Subpicosecond soliton compression of gain switched diode laser pulses using an erbium-doped fiber amplifier,” IEEE J. Quantum Electron. 29, 1701 (1993)
[1.22] K. A. Ahmed, K. C. Chan and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the. soliton-effect compression technique,” IEEE J. Quantum Electron. 1, 592 (1995).
[1.23] S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633 (1991)
[1.24] S. V. Chernikov, D. J. Richardson, E. M. Dianov and D. N. Payne, “Picosecond soliton pulse compressor based on dispersion decreasing fibre,” Electron. Lett. 28, 1842 (1992)
[1.25] S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476 (1993).
[1.26] P. V. Mamyshev, P. G. J. Wigley, J. Wilson and G. I. Stegeman, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response,” Phys. Rev. Lett. 71, 73 (1993).
[1.27] B. S. Azimov, Izv. Akad. Nauk, “self compression of ultra-short optical pulses in a fiber-amplifier system,” lzv. Akad. Nauk. ser. fiz. 50, 2268 (1986)
[1.28] K. J. Blow, N. J. Doran and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301 (1988)
[1.29] M. E. Fermann, A. Galvanauskas, and D. Harter, “All-fiber source of 100-nJ subpicosecond pulses,” Appl. Phys. Lett. 64, 1315 (1994).
[1.30] A. Galvanauskas, M. E. Fermann, and D. Harter, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053-1055 (1995).
[1.31] J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplan, Z. J. Chen, and D. N. Payne, “Femtosecond pulse amplification in cladding-pumped fibers,” Opt. Lett. 20,1797 (1995).
[1.32] C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832 (2003).
[1.33] C. J. S. de Matos and J. R. Taylor, “Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,” Opt. Express 12, 405 (2004).
[1.34] J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12, 3025 (2004).
[1.35] J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17, 37 (2005).
[2.1] R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent filters”, Opt. Lett. 7, 512 (1982).
[2.2] M. Hofer, M. E. Fermann, F. Haberl, M .H. Ober and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation”, Opt. Lett. 16, 502 (1991).
[2.3] H. A. Haus, J. G.. Jujimoto, E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking”, IEEE J. Quant. Electron. QE-28, 2086 (1992).
[2.4] G. P. Agrawal, Nonlinear Fiber Optics (Academic press, San Diego, 2001).
[2.5] F. Shimizu, “Frequency Broadening in Liquids by a Short Light Pulse”, Phys. Rev. Lett. 19, 1097 (1967).
[2.6] L. F. Mollenauer, R. H. Stolen, J. P. Gordon and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers”, Opt. Lett. 8, 289 (1983).
[2.7] E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov and V. N. Serkin, “Optimal compression of multisoliton pulses,” Sov. Tech. Phys. Lett. 12, 311(1986).
[2.8] N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber”, IEEE J. Quantum Electron. 27, 849 (1991).
[2.9] E. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift”, Opt. Lett. 11, 659 (1986).
[2.10] J. P. Gordon, “Theory of the soliton self-frequency shift”, Opt. Lett. 11, 662 (1986).
[3.1] M. E. Fermann, L. M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19, 43 (1994).
[3.2] K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220 (1993).
[3.3] B. C. Barnett, L. Rahman, M. N. Islam, Y. C. Chen, P. Bhattacharya, W. Riha, K. V. Reddy, A. T. Howe, K. A. Stair, H. Iwamura, S. R. Friberg, and T. Mukai, “High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber,” Opt. Lett. 20, 471 (1995).
[3.4] M. Jiang, G. Sucha, M.E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, “Nonlinearly limited saturable-absorber mode locking of an erbium f iber laser,” Opt. Lett. 24, 1074 (1999).
[3.5] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080 (1993).
[3.6] K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt. Lett. 19, 46 (1994).
[3.7] W. W. Hsiang , C. Y. Lin , M. F. Tien, and Y. C. Lai, “Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation,” Opt. Lett. 30, 2493 (2005).
[3.8] M. Nakazawa and E Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12, 1613 (2000).
[3.9] G.-R. Lin, Y.-S. Liao, and G.-Q. Xia, “Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers,” Opt. Express 12, 2017 (2004).
[3.10] G.-R. Lin and I.-H. Chiu, “Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz,” Opt. Express 13, 8772 (2005).
[3.11] G. P. Agrawal, Nonlinear Fiber Optics (Academic press, San Diego, 2001)
[3.12] J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662 (1986).
[3.13] M. Miyamoto, M. Tsuchiya, H. F. Liu, and T. Kamiya, “Generation of Ultrashort (~65fs) Pulses from 1.55 µ m Gain-Switched Distributed Feedback (DFB) Laser with Soliton Compression by Dispersion Arrangements,” Jpn. J. Appl. Phys. 35, L1330 (1996).
[3.14] P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938 (1987)
[3.15] S.V. Chernikov and P.V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633 (1991).
[3.16] S.V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476 (1993)
[3.17] Koji Igarashi, Masato Kishi and Masahiro Tsuchiya, “Higher-Order Soliton Compression of Optical Pulses from 5 ps to 20 fs by a 15.1-m-long Single-Stage Step-like Dispersion Profiled Fiber ,” Jpn. J. Appl. Phys. 40, 6426 (2001).
[4.1] M. E. Fermann, A. Galvanauskas, and M. Hofer, “Ultrafast pulse sources based on multi-mode optical fibers,” Appl. Phys. B 70, S13 (2000).
[4.2] A. Galvanauskas, M. E. Fermann, and D. Harter, “High-power amplification of femtosecond optical pulses in a diode-pumped fiber system,” Opt. Lett. 19, 1201 (1994).
[4.3] A. Galvanauskas, M. E. Fermann, and D. Harter, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053 (1995).
[4.4] A. Boskovic, M. J. Guy, S. V. Chernikov, J. R. Taylor, and R. Kashyap, “All-fibre diode pumped, femtosecond chirped pulse amplification system,” Electron. Lett. 31, 877 (1995).
[4.5] C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832 (2003).
[4.6] C. J. S. de Matos and J. R. Taylor, “Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,” Opt. Express 12, 405 (2004).
[4.7] J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12, 3025 (2004).
[4.8] J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17, 37 (2005).
[4.9] G. P. Agrawal, Nonlinear Fiber Optics (Academic press, San Diego, 2001).
[4.10] J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “High-Peak-Power Ultrashort Pulse Generation Using All-Fiber Chirped Pulse Amplification System with Small Core Multimode Fiber,” Jpn. J. of Appl. Phys. 44, 177 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top