|
In this thesis, we employed patterned sapphire substrate (PSS) to fabricate two kinds of light emitting diodes (LEDs), V-shape sapphire facet reflector LEDs and chemical wet-etched patterned sapphire substrate(CWE-PSS) LEDs. In the first part, GaN-based LEDs with V-shape sapphire facet reflector was fabricated using the double transferred scheme and sapphire chemical wet etching. The {1-102} R-plane V-shape facet reflector with a 57o against {0001} C-axis has the superior capability for enhancing the light extraction efficiency. The light output power of the V-shape sapphire facet reflector LED was 1.4 times higher than that of a flat reflector LED at an injection current of 20 mA. The significant improvement is attributable to the geometrical shape of sapphire facet reflector that efficiently redirects the guided light inside the chip toward to the top escape-cone of the LED surface. In the second part, characterization of GaN-based LEDs grown on the CWE-PSS with different evolved crystallography-etched facets was investigated. According to high-resolution X-ray rocking curves (HR-XRDs) and reliability test results, the CWE-PSS LEDs exhibited a better epitaxical film quality comparing to conventional LEDs. In addition, CWE-PSS LEDs also demonstrated significant increase on light extraction efficiency due to the contribution of high-slope inclined crystallography-etched facets. An impressive improvement of 40 % on the overall external quantum efficiency was achieved by adopting this novel CWE-PSS scheme. A Monte-Carlo ray-tracing method was also employed to derive the optimized condition of sapphire etching time, and the calculated result was consistent with the real device measurement. Therefore, the achieving improvement by CWE-PSS was not only due to the improvement of the internal quantum efficiency upon the good epitaxial quality, but also contributed to increase of the extraction quantum efficiency since crystallography-etched facets efficiently scattered the guided light to enter the escape cone on the top of device surface.
|