跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊勝裕
研究生(外文):Yang Sheng-Yu
論文名稱:錳含量對銅錳鋁合金相變化之影響
論文名稱(外文):Effects of Manganese content on the Phase Transformations of the Cu-Mn-Al Alloys
指導教授:劉增豐
指導教授(外文):Liu Tzeng-Feng
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:117
中文關鍵詞:相變化銅錳鋁合金a/4<111>反向晶界L-J相γ-銅β-錳
外文關鍵詞:phase transformationCu-Mn-Al alloya/4<111> APBsL-J Phaseγ-brassβ-Mn
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用光學顯微鏡,掃描穿透式電子顯微鏡和X光能量散佈分析儀等,研究觀察不同之錳含量對銅-錳-鋁三元合金顯微結構組織的影響。
本論文所得到的具體研究結果如下:

(一)、在淬火狀態下,Cu2.9Mn0.1Al(Cu-2.7at.%Mn-25.1at.%Al)合金顯微結構為D03相與淬火過程中經由麻田散相變化轉變成γ1΄麻田散相之混合相。然而我們發現在淬火狀態下,Cu2.8Mn0.2Al(Cu-5.1 at.%Mn-25.3at.%Al)與Cu2.7Mn0.3Al(Cu-7.6at.%Mn-25.1at.%Al)合金,其顯微結構為D03相和極細微之L-J混合相。但是在Cu2.6Mn0.4Al(Cu-10.3at.%Mn-25.2at.%Al)合金在淬火狀態下之顯微結構則變成為D03、L21與L-J之混合相,此結果與先前Bouchard等其他學者在銅-錳-鋁三元合金系統中所發現到的結果不同。在本研究中我們可清楚的觀察到a/4<111 >反向晶界存在於Cu2.9Mn0.1Al、Cu2.8Mn0.2Al及Cu2.7Mn0.3Al合金中,這是一個強而有力的直接證據證明D03相是經由β→B2→D03連續規律化變態所形成的。此處特別值得一提的是,至今a/4<111>反向晶界從未被其他學者在銅-錳-鋁合金系統中發現過。

(二)、當Cu2.7Mn0.3Al (銅-7.6at.%錳-25.1at.%鋁)合金在固溶處理後急速淬火後,其顯微結構為D03和極細微之L-J混合相,其中D03相是在淬火過程中經由β→B2→D03連續規律化變態所形成的。當此合金在500℃做適當時間之時效處理後,γ-brass相會開始在D03 基地中沿著a/2<100>反向晶界析出。然而,隨著時效時間的增加,L-J析出物開始在γ-brass顆粒周圍的鄰近區域析出,此γ-brass與L-J的共存現象至今從未被其他學者在銅-錳-鋁合金系統中發現過。此合金在500℃至700℃溫度範圍內做時效處理後其顯微結構之變化依序為:(γ-brass+L-J+D03)→(γ-brass+L-J+B2)→β。此結果與其他學者在Cu3-xMnxAl三元合金中當X<0.32時所發現到的結果截然不同。

(三)、在淬火狀態下,Cu1.6Mn1.4Al (銅-35.1at.%錳-25.1at.%鋁)合金的淬火顯微結構為L21、B2與L-J之混合相,這個發現和其他學者在Cu3-xMnxAl合金(X<1.0)合金中所發現到的結果不同。當此合金在460℃做短時間時效處理後,γ-brass顆粒會開始在L21基地中沿著反向晶界析出。隨著時效時間的增加,γ-brass析出物逐漸成長並且β-Mn析出物開始在γ-brass析出物之周圍析出,γ-brass與β-Mn之間的方向關係為(001)γ-brass//(012)β-Mn and (011)γ-brass// (031)β-Mn ,此γ-brass與β-Mn的共存現象至今從未被其他學者在銅-錳-鋁合金系統中發現過。此合金在460℃至700℃溫度範圍內做時效處理後其顯微結構之變化依序為:(γ-brass+β-Mn)→(β-Mn+B2) →β。
Effects of the manganese (Mn) content on the phase transformations of the Cu-Mn-Al ternary alloys have been investigated by means of optical microscopy, scanning transmission electron microscopy and energy- dispersive X-ray spectrometry. On the basis of the experimental examinations, several results can be summarized as follows:

[1].We have studied the Cu3-xMnxAl alloy systems at room temperature. In the as-quenched condition, the microstructure of the Cu2.9Mn0.1Al (Cu-2.7 at.%Mn-25.1at.%Al) alloy was a mixture of (D03 + γ1΄ martensite) phases. However, the as-quenched microstructures of the Cu2.8Mn0.2Al (Cu- 5.1at.%Mn-25.3at.%Al) and Cu2.7Mn0.3Al (Cu-7.6at.%Mn-25.1at.%Al) alloys were found to be D03 phase containing extremely fine L-J precipitates. However, as the X increasing to 0.4, that is Cu2.6Mn0.4Al (Cu-10.3at.%Mn-25.2at.%Al) alloy, it was a mixture of (D03 + L21 + L-J) phases in the as-quenched condition. These results are different from those proposed by Bouchard et al. The D03 phase in the Cu2.9Mn0.1Al, Cu2.8Mn0.2Al and Cu2.7Mn0.3Al alloys was formed by a β→B2→D03 continuous ordering transition during quenching, because of the presence of a/4<111> anti-phase boundaries (APBs). It is a strong evidence to demonstrate that the existing D03 phase was formed by a β→B2→D03 continuous ordering transition during quenching. It is worthwhile to note here also that the a/4<111> APBs have never been found in the Cu-Mn-Al alloy systems before.

[2].The as-quenched microstructure of the Cu2.7Mn0.3Al (Cu-7.6at.%Mn- 25.1at.%Al) alloy was D03 phase containing extremely fine L-J precipitates, where the D03 phase existing was formed by a β→B2→D03 continuous ordering transition during quenching. When the as-quenched alloy was aged at 500℃ for moderate times, the γ-brass particles were found to nuclear preferentially at a/2<100> APBs. However, with increasing the aged times at 500℃, the L-J precipitates started to appear at the regions contiguous to the γ-brass particles. The coexistence of (γ-brass+L-J) phases has never been observed by other workers in the Cu-Mn-Al alloy systems before. As the aging temperature was increased from 500℃ to 700℃, the phase transition sequence was found to be (γ-brass+L-J+D03)→(γ-brass+L-J+B2)→β. This result is different from that reported by previous workers in Cu3-xMnxAl alloys with X<0.32.

[3].In the as-quenched condition, the microstructure of the Cu1.6Mn1.4Al (Cu-35.1at.%Mn-25.1at.%Al) alloy was a mixture of (L21+B2+L-J) phases. This is different from that observed by previous workers in the Cu3-xMnxAl alloys with X<1.0. When the as-quenched alloy was aged at 460℃ for short times, γ-brass precipitates started to occur at APBs. After prolonged aging time at 460℃, the γ-brass precipitates grew and β-Mn precipitates generated at the regions contiguous to the γ-brass precipitates. The orientation relationship between the γ-brass and β-Mn was (001)γ-brass//(012)β-Mn and (011)γ-brass//(031)β-Mn. The coexistence of (γ-brass+β-Mn) has never been observed by previous workers in Cu-Mn-Al alloy systems before. When the as-quenched alloy was aged at temperatures ranging from 460℃ to 700℃, the phase transition sequence was found to be (γ-brass+β-Mn)→(β-Mn+L21)→β.
中文摘要 i
Abstract iv
Contents vii
List of Tables ix
List of Figures x
Chapter 1. General Introduction 1
Chapter 2. As-quenched Microstructures of Cu3-xMnxAl Alloys 15
2-1 Introduction 17
2-2 Experimental procedure 19
2-3 Results and discussion 21
2-4 Conclusions 43
References 45
Chapter 3. Phase Transformations in a Cu2.7Mn0.3Al Alloy 47
3-1 Introduction 49
3-2 Experimental procedure 51
3-3 Results and discussion 52
3-4 Conclusions 74
References 75
Chapter 4. Phase Transformations in a Cu1.6Mn1.4Al Alloy 77
4-1 Introduction 79
4-2 Experimental procedure 81
4-3 Results 82
4-4 Discussion 101
4-5 Conclusion 107
References 109
Chapter 5. Summary 111
List of Publications 115
1.P. R. Swann, H. Warlimont: Acta Metall., 11 (1963) 511.
2.R. P. Jewett, D. J. Mack: J. Inst. Metals, 92 (1963-64) 59.
3.D.L. Thomas: J. Inst. Metals, 94 (1966) 250
4.J.R. Moon, R.D. Garwood: J. Inst. Metals, 96 (1968) 17.
5.I. Lefever, L. Delaey: Acta Metall., 20 (1972) 797.
6.A. A. Hussein: Metall. Trans. A, 13A (1982) 837.
7.J.L.Murray: Int. Met. Rev. 30 (1985) 211.
8.F.C. Lovey, G.V.Tendeloo, J.v. Landuyt, S. Amelinckx: Scripta Metall. 19 (1985) 1223.
9.G. Roulin, P. Duval: Scripta Mater. 37 (1997) 45.
10.X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida: J. Alloy. Compd. 264 (1998) 201.
11.K. Matsushita, T. Okamoto, T. Okamoto: J. Mater. Sci. 20 (1985) 689.
12.C.L. Castillo, B.G. Mellor, M.L. Blázquez, C. Gómez: Scripta Metall. 21 (1987) 1711.
13.C.L. Castillo, M.L. Blázquez, C. Gómez, B.G. Mellor, N.Diego, J. Rio: J. Mater. Sci. 23 (1988) 3379.
14.M.L. Blazquéz, C.L. Castillo, C. Gómez: Metallography 23 (1989) 119.
15.J.M. Guilemany, F. Peregrin, F.C. Lovey, N. Llorca, E. Cesari: Mater. Character. 26 (1991) 23.
16.J. Dutkiewicz, J. Pons, E. Cesari: Matr. Sci. Eng. A 158 (1992) 119.
17.M.O. Prado, P.M. Decorte, F. Lovey: Scripta Metall. Mater. 33 (1995) 877.
18.G. Zak, A.C. Kneissl, G. Zatulskij: Scripta Mater. 34 (1996) 363.
19.R. Kainuma, S. Takahashi, K Ishida: Metall. Mater. Trans. A 27 (1996) 2187.
20.M.O. Prado: Scripta Mater. 38 (1998) 375.
21.Ye.G. Nesterenko, I.A. Osipenko, S.A. Firstov: Fiz. Metal. Metalloved. 27 (1969) 135.
22.Ye.G. Nesterenko, I.A. Osipenko, S.A. Firstov: Fiz. Metal. Metalloved. 28 (1969) 987.
23.Ye.G. Nesterenko, I.A. Osipenko: Fiz. Metal. Metalloved. 36 (1973) 702.
24.Ye.G. Nesterenko, I.A. Osipenko: Fiz. Metal. Metalloved. 36 (1973) 1212.
25.M. Bouchard, G. Thomas: Acta Metall. 23 (1975) 1485.
26.B. Dubois, D. Chevereau: J. Mater. Sci. 14 (1979) 2296.
27.T. Yamane, H. Okamoto, J. Takahashi: Z. Metallkde. 71 (1980) 813.
28.J. Solty: Phys. Stat. Sol. A 63 (1981) 401.
29.R. Kozubski. J. Solty: J. Mater. Sci. 17 (1982) 1441.
30.R. Kozubski. J. Solty: J. Mater. Sci. Letter. 2 (1983) 141.
31.R. Kozubski. J. Solty: J. Mater. Sci. 18 (1983) 1689.
32.R. Kozubski. J. Solty, R. Kuziak: J. Mater. Sci. 18 (1983) 3079.
33.R. Kozubski. J. Solty, J. Dutkiewicz, J. Morgiel: J. Mater. Sci. 22 (1987) 3843.
34.J.J. Counioux, J.L. Macqueron, M. Robin, J.M. Scarabello: Scripta Metall. 22 (1988) 821.
35.M. Prado, M. Sade, F. Lovey: Scripta Metall. Mater. 28 (1993) 545
36.A.S. Murthy, L. Yiping, G.C. Hadjipanayis, K. R. Lawless: IEEE Trans. Mag. 31 (1995) 3958.
37.J.S. Robinson, P.G. McCormick, R. Sreet: J. Phys. Condens. Matter. 7 (1995) 4259.
38.S. Sugimoto, S. Kondo, H. Nakamura, D. Book, Y. Wang, T. Kagotani, R. Kainuma, K. Ishida, M. Okada, M. Homma: J. Alloy. Compd. 265 (1998) 273.
39.R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, K. Ishida: J. Alloy. Compd. 266 (1998) 191.
40.E. Obradó, C. Frontera, L. Mañosa, A. Planes: Phys. Rev. B 58 (1998) 14245.
41.J. Marcos, E. Vives, T. Castán: Phys. Rev. B 63 (2001) 224418.
42.J. miettinen: Calphad 27 (2003) 103.
43.P. R. Swann, W. R. Duff & R. M. Fisher: Metall. Trans., 3 (1972) 409.
44.S. M. Allen & J. W. Cahn: Acta Metall., 24 (1976) 425.
45.S. M. Allen: Phil. Mag., 36(1) (1977) 181.
46.T. F. Liu, G. C. Uen, C. Y. Chao, Y. L. Lin & C. C .Wu: Metall. Trans. A, 22A (1991) 1407.
47.C. C .Wu, J. S. Chao & T. F. Liu: Metall. Trans. A, 22A (1991) 2265.
48.T. F. Liu, S. C. Jeng & C. C. Wu: Metall. Trans. A, 23A (1992) 1395.
49.J. W. Lee & T. F. Liu: Mater. Chem. Phy.s, 69 (2001). 192.
50.N. Zárubová, A. Gemperle, V. NováK: Mater. Sci. Eng. A 222 (1997) 166.
51.J. Soltys, Acta Polon. A 56 (1979) 227.
52.J. Soltys, R. Kozubski, Acta Polon. A 57 (1980) 181.
53.K.C. Chu, T.F. Liu, Metall. Mater. Trans. A 30 (1999) 1705.
54.S.C. Jeng, T.F. Liu, Metall. Mater. Trans. A 26 (1995) 1353.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 游清鑫(1997),〈共識與爭議─ 一些民主化研究問題的探討〉,《問題與研究》,36卷9期:頁59-73。
2. 黃政剛 (2004),〈各國公務人員安全查核制度概述〉,《公務人員月刊》,第98期,頁21-30。
3. 黃政剛 (2004),〈各國公務人員安全查核制度概述〉,《公務人員月刊》,第98期,頁21-30。
4. 林文淵(2003),〈涉及國家安全或重大利益公務人員查核辦法草案〉,《人事月刊》,第36卷第5期,頁63-66。
5. 林文淵(2003),〈涉及國家安全或重大利益公務人員查核辦法草案〉,《人事月刊》,第36卷第5期,頁63-66。
6. 朱武獻(2006),〈政府改造現況與展望〉,《日新警察半年刊》,第6期,頁172-189。
7. 朱武獻(2006),〈政府改造現況與展望〉,《日新警察半年刊》,第6期,頁172-189。
8. 仉桂美 (2003),〈文官中立-在民主行政典範中困境的探討〉,《公務人員月刊》,第86期,頁21-34。
9. 仉桂美 (2003),〈文官中立-在民主行政典範中困境的探討〉,《公務人員月刊》,第86期,頁21-34。
10. 王信賢(2004),〈物以類聚:台灣IT產業大陸投資之群聚現象與理論辯析〉,《中國大陸研究》,第47卷第3期,頁85-110。
11. 王信賢(2004),〈物以類聚:台灣IT產業大陸投資之群聚現象與理論辯析〉,《中國大陸研究》,第47卷第3期,頁85-110。
12. 游清鑫(1997),〈共識與爭議─ 一些民主化研究問題的探討〉,《問題與研究》,36卷9期:頁59-73。
13. 鄭中堅(1992),〈端正政風首重公務倫理〉,《人事管理》,第29卷第7期,頁14-17。
14. 鄭中堅(1992),〈端正政風首重公務倫理〉,《人事管理》,第29卷第7期,頁14-17。
15. 蔡東杰(1997),〈民主化理論的釐清與重構:以拉丁美洲為例〉,《問題與研究》第8期,頁67-80。