跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/14 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊方慈
研究生(外文):Fang-Tzu Chuang
論文名稱:奈米碳管化學表面改質應用於直接甲醇燃料電池陰極電極之研究
論文名稱(外文):Study of Chemical Surface Modifications of CNTs as cathode electrode for DMFC
指導教授:陳家富陳家富引用關係
指導教授(外文):Chia-Fu Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:75
中文關鍵詞:直接甲醇燃料電池
外文關鍵詞:DMFC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:4
本研究是以多壁奈米碳管作為直接甲醇燃料電池陰極部分的鉑觸媒載體,因此先在碳布上直接生成大量且具方向性的多壁奈米碳管;此方法可以簡化碳管應用於陰極的製程,且碳布上的奈米碳管具有高附著性。

再以高溫條件,使用HNO3、H2SO4、KOH作為多壁奈米碳管的化學表面改質溶液,以產生官能基鍵結在奈米碳管上,促進鉑離子均勻地及高密度地披覆在多壁奈米碳管表面上。並探討溫度、時間、濃度對多壁奈米碳管化學表面改質之效應,而利用FTIR、XPS、EDX、CV的分析,我們發現多壁奈米碳管在6小時的14M HNO3處理下,可以產生大量官能基以協助電化學觸媒鉑金屬的披覆,進而提升陰極部分的電池效能。
In this study, multi-wall carbon nanotubes (MWNTs) are used as Pt catalyst support for cathode electrode in the direct methanol fuel cell (DMFC). Thus, a lot of well-align MWNTs are fabricated on carbon cloth directly. The method in the cathode electrode of DMFC is easy to constructed and sticking on the carbon cloth tightly.

Then, MWNTs are modified by HNO3, H2SO4, and KOH at high temperature may produce different functional groups to attract more Pt ions nucleating uniformly and densely. Moreover, there are the other parameters, temperature, time, and concentration, in the function of chemical modification for MWNTs. In this way, we would find 14M-MWNTs at 6 hours by using FTIR, XPS, EDX, and CV may produce a lot of functional groups to increase Pt anchoring sites. Finally, it could improve the efficiency of half-cell test.
Contents
Abstract (Chinese)………………………………………………………...……..…….I
Abstract (English) …………………………………………………………...…..…....II
Contents……………………….…………………………………………..………….III
Figure Caption…………………………………………………………..…..….…….VI
Table Caption……………………………………………………………...………......X
Chapter 1.Introduction…...………….………………………………………...….....1
1.1 Preface.……………………………………………..………………...…………..1
1.2 Background of the study…………………………………………………..……..5
1.2.1 Pt/Carbon black for DMFC electrode (commerce)……………………...…5
1.2.2 Carbon nanomaterials for DMFC electrode......……………………….…...7
1.2.3 Modification of CNTs powder for DMFC electrode……………………….8
1.3 Motivation…………………………………………………………......................9

Chapter 2.Fundamentals of MEA for DMFC and Modification of CNT…....….10
2.1 Assemble of MEA for DMFC………………………….…………………..…...10
2.1.1 Proton Exchange Membrane……………………………………………...10
2.1.2 Catalyst Layer…………………………………………………..………...10
2.1.3 Gas diffusion layer…………………………………………………..……11
2.2 Principle of DMFC....………………………………………………….....…….13
2.3 Growth and Characterization of Carbon Nanotube……………………………..15
2.3.1 Growth Methods……………………………………………………...…...15
2.3.2 The growth mechanism of Carbon nanotubes……………………...……..18
2.4 Modification of Carbon Nanotube.……………………………………………..19

Chapter 3.Experimental Procedures ……………………...……….……………...20
3.1 Fabrication of CNT on C Cloth...…………………..…………….………...…...21
3.2 Modification of carbon nanotube on carbon cloth…...………………….…...…22
3.3 Dispersing of Pt on Prepared Carbon Cloth…..…………………….…….…….23
3.4 Analysis Instruments………………………………………………………..…..24
3.4.1 Scanning Electron Microscopy (SEM)………………………….…...…....24
3.4.2 Transmission Electron Microscopy (TEM)………………………....…….24
3.4.3 X-ray Photoelectron Spectroscopy (XPS)……..………………....……….25
3.4.4 Fourier Transform Infrared Spectrometer (FTIR)……………....………...26
3.4.5 Cyclic Voltammetry (CV) Potentiostat………………………….………...26
3.4.6 Energy Dispersive X-ray (EDX)....…………………..…….......................27
3.4.7 X-Ray Diffraction (XRD)……………………………………….….…….28

Chapter 4.Results and Discussion………………………….……………...……….30
4.1 Morphology of carbon nanotube on carbon cloth…………………….………...30
4.2 Multi-wall carbon nanotubes are modified by HNO3, H2SO4, and KOH……....32
4.2.1 Analysis of functional groups………………………………………...…...33
4.2.2 Qualitative analysis of Pt on MWNTs…………………………...….…….37
4.2.3 Analysis of dispersive Pt on MWNTs……………………..……….……..40
4.2.4 EDX analysis of Pt on MWNTs………………………………..….……...40
4.2.5 Half-cell test……………………………………………………….……...44
4.2.6 Summary………………………………………………………….………44
4.3 Multi-wall carbon nanotubes are modified by HNO3 with Temperature (T),
time (t), and concentration (conc.)……………….………………..…….….…..46
4.3.1.1 Analysis of MWNTs morphology with T……………………..….……..47
4.3.1.2 Analysis of functional groups with T…………………………..…….…47
4.3.2.1 FTIR of 2M HNO3-MWNTs with t…………………………..….……...50
4.3.2.2 EDX analysis of Pt/2M HNO3-MWNTs………………….….….……...50
4.3.2.3 Half-cell test……………………………………………………….……51
4.3.2.4 Effective activating area…………………………………….….….……51
4.3.3.1 FTIR of 14M HNO3-MWNTs with t……………………………...…….58
4.3.3.2 EDX analysis of Pt/14M HNO3-MWNTs………………………...…….58
4.3.3.3 Half-cell test…………………………………………………....….……58
4.3.3.4 Effective activating area…………………………………………...……59
4.3.4 Summary…………………………………………………………….……59
4.4 Analysis of 14M HNO3-MWNTs..……………………………………..………66
4.4.1 Analysis of mean Pt nanoparticle size.……………………………...…….66
4.4.2 Analysis of MWNTs morphology……….……………………..….………68
4.4.3 Summary……………………………………..…………..……….….……68

Chapter 5.Conclusions……………….……………………………………...….......72
Reference…..…………………....………………………………………….………...73
1. M.S. Wilson, Membrane catalyst layer for fuel cells, U.S. Pat. No.5,234,777 (1993).
2. Y.-G. Chun, C.-S. Kim, D.-H. Peck, D.-R. Shin, J. Power Sources 71 (1998) 174.
3. S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, T.H. Lee, Electrochim. Acta 43 (1998) 3693.
4. O.J. Murphy, G.D. Hitchens, D.J. Manko, J. Power Sources 47 (1994) 353.
5. E.A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209.
6. X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, J. Yu, J. Power Sources 79 (1999) 75.
7. M.S. Wilson, S. Gottesfeld, J. Appl. Electrochem. 22 (1992) 1.
8. M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda, A. Ohta, J. Electrochem. Soc. 143 (1996) 2245.
9. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 412 (2001) 169.
10. C.A. Bessel, K. Laubernds, N.M. Rodriguez, R. Terry, K. Baker, J. Phys. Chem. B 105 (2001) 1115.
11. N.M. Rodriguez, M.-S. Kim, R. Terry, K. Baker, J. Phys. Chem. 98 (1994) 13108.
12. Y.-C. Liu, X.-P. Qiu, Y.-Q. Huang, W.-T. Zhu, J. Power Sources 111 (2002) 160.
13. B.C. Satishkumar, E.M. Vogl, A. Govindaraj, C.N.R. Rao, J. Phys. D 29 (1996) 3173.
14. B.C. Satishkumar, A. Govindaraj, J. Mofokeng, G.N. Subbanna, C.N.R. Rao, J. Phys. B 29 (1996) 4925.
15. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon 40 (2002) 791.
16. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Langmuir 15 (1999) 750.
17. V. Lordi, N. Yao, J. Wei, Chem. Mater. 13 (2001) 733.
18. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Langmuir 15 (1999) 346.
19. G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B 108 (2004) 19960.
20. Z. Liu, J.Y. Lee, W. Chen, M. Han, L.M. Gan, Langmuir 20 (2004) 181.
21.Elzbieta Frackowiak, Grzegorz Lota, Thomas Cacciaguerra, Francois Beguin, Electrochem. Commun. 8 (2002) 129.
22. B. Rajesh, K.R. Thampi, J.M. Bonard, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan,
J. Phys. Chem. B 107 (2003) 2701.
23. Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, Mater. Chem. Phys. 85 (2004) 396.
24. Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Diam. Relat. Mater. 13 (2004) 1764.
25. D.J. Guo, H.L. Li, J. Electroanal. Chem. 573 (2004) 197.
26. Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Langmuir 18 (2002) 4054.
27. B. Rajesh, V. Karthik, S. Karthikeyan, K.R. Thampi, J.M. Bonard, B. Viswanathan, Fuel 81 (2002) 2177.
28. C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Nano Lett. 4 (2004) 345.
29. B. Xue, P. Chen, Q. Hong, J.Y. Lin, K.L. Tan, J. Mater. Chem. 11 (2001) 2378.
30. R.Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G.Q. Xu, T.S.A. Hor, Chem. Mater. 10 (1998) 718.
31. T. Freelink, W. Visscher, and J.A.R.van Veen, Surf. Sci. 335 (1995) 353.
32. Ki Chul Park, Takuya Hayashi, Hiroshi Tomiyasu, Morinobu Enbo, and Mildred S. Dresselhaus, J. Mater. Chem. 15 (2005) 407.
33. 汪建民,材料分析,中國材料學會,台灣新竹 (1998).
34. L.Q. Jiang, L. Gao, Carbon 41 (2003) 2923.
35. B. Rohland, Marlies Pietrzak, S. Moller, Mihaela-C. Bunescu, Marion Wienecke and
T. Barfels, Fullerenes, Nanotubes, and Carbon Nanostructures 13 (2005) 511.
36. H.J. Wang, H.Yu, F. Peng, P. Lv, Electrochem. Commun. 8 (2006) 499.
37. Yong-Tae Kim, Tadaoki Mitani, J. Catalysis 283 (2006) 394.
38. T.I.T. Okpalugo, P.Papakonstantinou, H.Murphy, J.McLaughlin, N.M.D. Brown and T.McNally, Fullerenes, Nanotubes, and Carbon Nanostructures 13 (2005) 477.
39. T.Teranishi, M. Hosoe, T. Tanaka, and M.Miyake, J. Phys. Chem. B 103 (1999) 3818.
40. 衣寶廉,燃料電池-原理與應用,五南圖書出版公司 台灣 (2004).
41. Min Chen and Yangchuan Xing, Langmuir 21 (2005) 9334.
42. Woods, R. Electroanal. Chem. 9 (1976) 1.
43. B.E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文