資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/10 07:45
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
徐守謙
研究生(外文):
Shou-Chian, Hsu
論文名稱:
聚亞醯胺發光二極體及奈米複合材料之合成與特性研究
論文名稱(外文):
Synthesis and Characterization of Polyimide Light-Emitting Diodes and Nanocomposites
指導教授:
黃華宗
指導教授(外文):
Wha-Tzong Whang
學位類別:
博士
校院名稱:
國立交通大學
系所名稱:
材料科學與工程系所
學門:
工程學門
學類:
材料工程學類
論文種類:
學術論文
論文出版年:
2006
畢業學年度:
94
語文別:
英文
論文頁數:
111
中文關鍵詞:
聚亞醯胺
、
發光二極體
、
奈米複合材料
外文關鍵詞:
polyimides
、
light-emitting diodes
、
nanocomposites
相關次數:
被引用:0
點閱:325
評分:
下載:49
書目收藏:0
顯示和奈米科技是近年來不管在基礎學科或高科技產業中相當熱門的兩個課題。本論文將分成兩個部分,共七個章節,針對聚亞醯胺之發光二極體及奈米複合材料的特性 (2–5章),和一維奈米材料的製備兩個主題做深入的研究(6,7章)。
首先在第二章為BAO系列聚亞醯胺發光二極體特性研究。所有合成的BAO系列聚亞醯胺玻璃轉化溫度皆大於250℃,5 wt.-% 熱裂解溫度也大於510℃,顯示良好的熱安定性及機械性質。這些聚亞醯胺也均有螢光特性,而且螢光強度跟分子鏈的排列有密切的關係。進一步將合成之聚亞醯胺製作成單層發光二極體元件,只有BAO-ODPA和BAO-6FDA兩種聚亞醯胺觀察到電致發光性質,BAO-PMDA 和BAO-BPADA兩種聚亞醯胺可能因薄膜均勻性太差導致原件短路。另外,BAO-ODPA在雙層發光二極體元件中(ITO/PPV-PVA/PI/Al)也具有良好的電子傳輸及電洞阻障的功能,可將PPV-PVA發光效率提高兩個級數。
第三章為利用真空蒸鍍聚合製備以BAO-6FDA和BAPF-6FDA兩種聚亞醯胺為發光層之單層發光二極體。利用真空蒸鍍聚合,聚亞醯胺薄膜的厚度可降低至150 Å,兩種聚亞醯胺二極體元件也都表現出4.5V 和6.5V相當低的啟動電壓。經由原子力顯微鏡的分析,BAO-6FDA和BAPF-6FDA兩種聚亞醯胺薄膜皆有良好的表面平整度,分別為8.8 Å和4.7 Å。BAO-6FDA發光二極體具有較寬的電致發光頻譜,其範圍從400 nm 到700 nm。而BAO-BAPF發光二極體則表現出較佳的發光效率,這可能是因為較平衡的電子/電洞注入及較強的分子間電荷轉移作用。
第四章敘述聚亞醯胺/ZnO奈米混成膜的製備與特性。PMDA-ODA和BTDA-ODA兩種不同柔軟度的聚亞醯胺作為高分子基材進行研究。經由FTIR和XPS的分析,推斷ZnO表面的OH基和聚亞醯胺的C=O官能基會形成交鏈,進而提升混成膜的熱和機械性質。另外,穿透式電子顯微照片說明,ZnO奈米粒子分散在較剛硬的PMDA-ODA聚亞醯胺,粒子尺寸會大於分散在較柔軟的BTDA-ODA聚亞醯胺中。
第五章為利用蒸鍍/氧化二段法大量製備ZnO奈米單晶粒子於石英及聚亞醯胺基材上。蒸鍍後的Zn金屬在350℃熱風循環機進行氧化2小時,可完全轉變成透明的ZnO。經由高解析度TEM觀察,製備的ZnO奈米粒子為晶格規則排列的單晶結構,並無晶格缺陷,並顯示出一395 nm 的紫外光發光特性。
第六章敘述oleic acid/1-decanol/ammonium hydroxide 三相系統的inverse hexagonal (HII) 液晶相的製備與特性。HII相位於此三相圖的中央,由21/55/24, 28/27/45和62/5/33 (oleic acid/1-decanol/ammonium hydroxide) 三點組成的三角形區域。在此HII相區域中,隨著1-decanol含量的減少液晶消失溫度(isotropic temperature)變化從55℃到142℃。經由XRD分析,推斷製備的HII相的圓柱直徑為4−4.4 nm,內部水相直徑為1−1.4 nm。在此三相系統中,ammonium hydroxide的含量提高至45 wt.-%,及摻入多種金屬離子,如Ag+, Cu2+, Ni2+, Co2+, Zn2+, 和 Cd2+,皆不會破壞原本規則的HII相。
本論文第七章敘述利用先合成的管狀銀離子先驅物,在室溫下即時還原製備銀奈米電纜(nanocable)。經由FTIR分析,推論配位的銀離子錯合物形成交鏈,自身聚集,進而促成管狀先驅物的形成。此銀離子管狀先驅物長度達數微米,外徑為155−200 nm,徑/長比,管壁厚度為60−70 nm。經甲醛還原後,原本管狀先驅物的中空部份,均勻的被直徑30−45 nm的銀奈米線所填充,形成奈米電纜結構。還原條件,如還原劑濃度和還原方法,對於最後產物的型態有很大的影響。
Display and nano technologies are two hottest topics in recent years not only in academic research but in high-tech industry. This thesis is divided into two parts to investigate the characterization of polyimide (PI)-based light emitting diodes (LED) and nanocomposites (chapter 2−5), and the preparation of one-dimensional nanostructures (chapter 6, 7).
Chapter 2 describes the characteristics of a single layer and a double layer 2,5-Bis(4-aminophenyl)-1,3,4-oxadiazole (BAO)-based PI LED. All the resultant PIs possess high glass transition temperatures ( >250℃) and high decomposition temperatures of 5 wt.-% weight loss (Td, >510℃). They also show obviously fluorescent characteristic, and the intensity is related to the arrangement of the molecular chains. Electroluminescent (EL) spectra were detected when BAO-ODPA and BAO-4,4’-(hexafluoroisopropylidene)diphthalic anhydrid (6FDA) acted as an emitting layer in a single LED device. In addition, in the double layer LED device, ITO/PPV-PVA/BAO-ODPA/Al, BAO-ODPA can be used as an excellent electron transport and electron/hole blocking layer, a significant improvement in the EL efficiency by two order of magnitude.
In chapter 3 presents that BAO and 4,4’-(9-Fluorenylidene)dianiline ( BAPF ) reacting with 6FDA were carried out by using vapor deposition polymerization (VDP) for single layer LED devices. The thickness of the PI thin film can be reduced to 150Å, and both PI-LEDs show low threshold voltages, 4.5V and 6.5V for BAO-6FDA and BAPF-6FDA LEDs, respectively. The root mean square of the surface roughnesses of the BAO-6FDA and BAPF-6FDA PI thin films are 8.8Å and 4.7Å, respectively, which are far smaller than that of wet coating process. The BAO-6FDA LED film emits a broader EL band, covering the full range of visible light (400 nm to 700 nm), than the BAPF-6FDA LED. However, the electroluminescent efficiency of BAPF-6FDA LED is higher than BAO-6FDA LED. It may suggest the better balance on holes and electrons injection in the former and better intermolecular charge transfer.
Chapter 4 reports the study of a series of PI/ZnO nanohybrid films with different ZnO content, which prepared from a rigid pyromellitic dianhydride (PMDA)-4,4’-diaminodiphenylether (ODA) and a flexible 3,3’,4,4’-benzophenonetetracarboxylic acid dianhydride (BTDA)-ODA PI matrixes. Analyses of Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy depict that the ZnO nanoparticles function as a physical crosslinking agent with PI through hydrogen bonding between the OH on the ZnO surfaces and the C=O of the imide groups. This crosslink causes the enhancement of thermal and mechanical properties of the hybrid films. Transmission electron microscopy (TEM) images reveal that the rigid matrix induces larger ZnO particle size (30−40 nm) compared the flexible matrix (10−15 nm).
In chapter 5 describes the study of the evaporation/oxidation two-step approach to massive prepare ZnO nanocrystals on a quartz and a PI film by using a thermal coater and an air-circulating. ZnO crystals were formed via low temperature oxidization at 350℃ for 2h. TEM images show the singular ZnO nanocrystals have regular lattice order without stacking faults. Deposited ZnO on PI film substrates can obtain individual and well distribution nanocrystals with average crystal size is 20-30 nm after dispersing by an ultrasonic bath. In photoluminescence, the produced ZnO nanocrystals exhibit strong UV emission at 395 nm, and no visible emission was detected.
Chapter 6 presents the ternary system oleic acid/1-decanol/ammonium hydroxide exhibiting an inverse hexagonal (HII) liquid crystalline phase, which exists between the compositions 21/55/24, 28/27/45, and 62/5/33 (oleic acid/1-decanol/ammonium hydroxide). The isotropic temperature increases from 55 °C to 142 °C with decreasing 1-decanol content. X-ray diffraction reveals interdigitated columns of 4−4.4 nm diameter with an internal water channel of 1−1.4 nm diameter. The system can tolerate up to 45 wt-% of ammonium hydroxide before the hexagonal phase collapses and can be doped with up to 0.1 mM concentrations of metals such as Ag+, Cu2+, Ni2+, Co2+, Zn2+, and Cd2+.
Chapter 7 describes a simple and efficient method to in situ fabricate silver nanocables at room temperature from a self-assembling silver precursor. Properly control of the reaction condition, such as reagent concentration and method of reduction, is important to obtain well-defined nanocables. In addition, FTIR spectroscopy revealed the organic sheath to be crosslinked via bridging-type coordination to the silver ions, which helps in the formation of the tubular aggregation.
Content
摘要……………..………………………………………………………………….......i
Abstract……………………………………………………………………………….iii
誌謝…………………………………………………………………………………...vi
Content………………………………………………………………………………viii
Figure list……………………………………………………………………………..xi
Table list………………………………………………………….…………………..xv
Preface…………..…………………………………………………………....…...…...1
Chapter 1 Literature Review: Preparation and Characterization of
Polyimides……………………………………………………………5
1.1 Preparation…………………………………………………………....6
1.1.1 Two-step method……………………………………………………..6
1.1.2 One-step method………………………………………………….....13
1.1.3 Vapor deposition polymerization…………………………………....13
1.2 Characterization……………………………………………………..17
1.2.1 General charge transfer theory……………………………………....17
1.2.2 Polyimide properties influenced by CT interactions………………..20
References…………………………………………………………………..25
Chapter 2 Electroluminescence and Electron Transport Characteristics
of Aromatic Polyimides....................................................................28
2.1 Introduction…………………………………………………………29
2.2 Experimental section………………………………………………..30
2.2.1 Materials…………………………….…………………………...….30
2.2.2 Preparation of PI films……………………………………...…….....30
2.2.3 Devices fabrication………………………………………………….30
2.2.4 Characterization……………………………………………………..31
2.3 Results and discussion...………………………………………...…..32
2.4 Conclusions…………………………………...……………………..41
References…………………………………………………………………..42
Chapter 3 Vapor Deposition Polymerization of Aromatic Polyimides
for Electroluminescent Devices…………………………………...44
3.1 Introduction…………………………………………………………45
3.2 Experimental section………………………………………………..46
3.2.1 Materials…………………………….…………………………...….46
3.2.2 Vapor deposition polymerization…………………………...……... 47
3.2.3 Characterization……………………………………………………..47
3.3 Results and discussion...………………………………………...………48
3.4 Conclusions…………………………………...………………………...55
References…………………………………………………………………..56
Chapter 4 Characterization of Polyimide/ZnO Nanohybrid Films………....57
4.1 Introduction………………………………………………………….58
4.2 Experimental section………………………………………………...59
4.2.1 Materials…………………………….…………………………...….59
4.2.2 Synthesis of ZnO-TPM nanoparticles………………………………59
4.2.3 Preparation of PI/ZnO nanohybrid films…………………………....59
4.2.4 Characterization……………………………………………………..61
4.3 Results and discussion.…………………………………...…………61
4.4 Conclusions………………………...…………………………….....70
References………………………………………………………………….72
Chapter 5 Fabrication of ZnO Nanocrystals by Evaporating Oxidizing Two-step Approach………………………………………………..73
5.1 Introduction………………………………………………………….74
5.2 Experimental section………………………………………………...74
5.3 Results and discussion.…………………………………...………….75
5.4 Conclusions………………………...……………………………......79
References…………………………………………………………………..81
Chapter 6 Formation of Inverted Hexagonal Liquid Crystal in Mixtures
of Amine-metal Hydroxides………………….…………………....82
6.1 Introduction………………………………………………………….83
6.2 Experimental section………………………………………………...84
6.2.1 Materials…………………………….…………………………...….84
6.2.2 Preparation of HII phase liquid crystals…. …………………………84
6.2.3 Characterization……………………………………………………..85
6.3 Results and discussion.…………………………………...…………85
6.4 Conclusions………………………...……………………………......91
References…………………………………………………………………..92
Chapter 7 Preparation of Silver Nanocables from Self-assembling
Tubular Silver ion Precursors.........................................................94
7.1 Introduction………………………………………………………….95
7.2 Experimental section………………………………………………...95
7.2.1 Materials…………………………….…………………………...….95
7.2.2 Preparation of silver nanocables…………………………………….96
7.2.3 Characterization……………………………………………………..96
7.3 Results and discussion.…………………………………...…………97
7.4 Conclusions………………………...……………………………....104
References…………………………………………………………………105
Summary……………………………………………………………………………106
Publication………………………………………………………………………….109
Curriculum vitae……………………………………………………………………110
Figure list
Preface
Figure 1 Chemical structure of Kapton H…………………………………….......1
Chapter 1 Literature Review: Preparation and Characterization of
Polyimides
Figure 1.1 Chemical reaction of polyimide formation……………………...….....6
Figure 1.2 Formation mechanism of poly(amic acid)………………..…………...7
Figure 1.3 Mechanism of thermal imidization…………………………………..12
Figure 1.4 Schematic setup of vapor deposition system………………………...14
Figure 1.5 Reaction mechanism for the formation of VDP polyimides………....16
Figure 1.6 Orbital charge density for HOMO and LUMO in PMDA–ODA…....18
Figure.1.7 Schematic diagrams for: (a) HOMO–LUMO and HOMO–second
LUMO transitions; (b) CT emission in PMDA–ODA…….…............19
Figure 1.8 . Torsional angle ω and the intramolecular donor/acceptor nature of
the polyimide………………………………………………………....20
Figure 1.9 Fluorescence spectra of several commercial PI films (50 μm thick)
upon excitation at 300 nm…………………………………………....21
Figure 1.10 .Photocurrent responses as a function of applied electric field for
..7.5 μm thick Kapton film and DMA–loaded Kapton film upon
..excitation at 480 nm……………………………………………....….22
Chapter 2 Electroluminescence and Electron Transport Characteristics
of Aromatic Polyimides
Figure 2.1 Monomer structures and the synthesis route of poly(amic acid) and
. polyimides…………………………………………………………...31
Figure 2.2 Absorption spectra of the API films with 20 μm thickness…….…....34
Figure 2.3 Fluorescence spectra of the APIs films with 20 μm thickness………35
Figure 2.4 WAXD patterns of the APIs films with 20 μm thickness…………...35
Figure 2.5 Polyimide chain–chain interaction (a)CT interaction and (b)crystal..36
Figure 2.6 Normalized electroluminescence spectra of the single layer API–
LED device…………………………………………………………..37
Figure 2.7 ..Current density–voltage characteristic (closed mark) and EL intensity
–voltage (open mark) for the single layer API–LED devices………..37
Figure 2.8 EL efficiency of single layer API–LED devices…………………….38
Figure 2.9 Normalized electroluminescence spectra of the LED devices………39
Figure 2.10 .EL efficiency of the LED devices: ITO/PPV–PVA/Al and
ITO/PPV–PVA/BAO–ODPA/Al.........................................................39
Figure 2.11 .Band diagram of ITO/PPV–PVA/BAO–ODPA/Al LED device....... 40
Chapter 3 Vapor Deposition Polymerization of Aromatic Polyimides
for Electroluminescent Devices
Figure 3.1 Monomer structures and the preparation route of PIs……….………46
Figure 3.2 FT-IR spectra of PI thin films (a) BAO–6FDA and (b) BAPF–6FDA
before and after imidization………………………………………….48
Figure 3.3 Surface morphologies of the PI thin films (800Ǻ) (a) BAO–6FDA
and (b) BAPF–6FDA by vapor deposition; (c) BAO–6FDA by wet
coating………………………………………………………………..49
Figure 3.4 UV–Vis absorption spectra of BAO–6FDA and BAPF–6FDA PI
thin films……………………………………………………………..50
Figure 3.5 Electroluminescent spectra of PI–LED devices: ITO/BAO–6FDA/Al
and ITO/BAPF–6FDA/Al....................................................................51
Figure 3.6 (a) Current density-voltage and (b) brightness-voltage characteristics
of PI-LED devices ITO/BAO-6FDA/Al with different PI thickness:
150Å, 300Å and 600 Å………........................……………………...52
Figure 3.7 (a)Current density-voltage and (b)brightness-voltage characteristics
of PI-LED devices ITO/BAPF-6FDA/Al with different PI thickness:
150Å, 300Å and 600Å….……………………………………….…..52
Figure 3.8 Brightness-current density characteristics of PI-LED devices with
different PI thickness…….…………...……………………………..53
Figure 3.9 Cyclic voltammograms of polyimides (a) oxidation curves (b)
.reduction curves……………………………………………………..54
Figure 3.10 .Band diagrams of ITO/BAO-6FDA/Al (left) and ITO/BAPF-6FDA/
Al (right)……………………………………………………………..54
Chapter 4 Characterization of Polyimide/ZnO Nanohybrid Films
Figure 4.1 Monomer structures and the synthetic route of PI/ZnO hybrid
.films……………………………………….…………………...……60
Figure 4.2 FT-IR spectra of BTDA–ODA/ZnO hybrid films…………………...62
Figure 4.3 XPS wide-scan spectrum of BTDA–ODA/ZnO 5 wt.-% film………62
Figure 4.4 Thermal gravimetric profiles of unmodified ZnO nanoparticles and
TPM–stabilized ZnO nanoparticles………………………………….63
Figure 4.5 Zn 2p core-level spectra of various BTDA–ODA/ZnO hybrid films
With different ZnO content………………………………………….64
Figure 4.6 Illustration of the interaction between ZnO nanoparticles and PI
chains……………………………………………………….………..64
Figure 4.7 Dynamic mechanical storage moduli of BTDA–ODA/ZnO and
PMDA–ODA/ZnO hybrid films……………………………………..66
Figure 4.8 Dynamic mechanical tan δ curves of the PI/ZnO hybrid films BTDA–
ODA/ZnO and PMDA–ODA/ZnO…………………………………………66
Figure 4.9 Deconvolution of tan δ curves of BTDA–ODA/ZnO nanohybrid films…67
Figure 4.10 Dynamic thermal gravimetric profiles of BTDA–ODA/ZnO and
.PMDA–ODA/ZnO nanohybrid films……………………...……..…..68
Figure 4.11 TEM images of (a) TPM–stabilized ZnO nanoparticles (b) BTDA–
.ODA/ZnO–5 wt/.-%, and (c) PMDA–ODA/ZnO–5 wt.-% hybrid
films………………………………………………………………….69
Chapter 5 Fabrication of ZnO Nanocrystals by Evaporating Oxidizing Two-step Approach
Figure 5.1 XRD pattern of ZnO samples as-deposited and after oxidized at
350 ℃ for 2h………………………………………………………..76
Figure 5.2 Top view (a–c) and side view (d–e) FE-SEM images of the ZnO
samples fabricated on quartz substrate at three different deposition
time 2 min, 5 min and 10 min, respectively, and then oxidized at
350 ℃ for 2 h…………………………………………………….…77
Figure 5.3 (a) Low magnification TEM image of the ZnO nanocrystals and
high magnification TEM images (inset); (b) HRTEM image and
the SAED patten (inset)……………………………………………...78
Figure 5.4 (a) FE-SEM images of the ZnO samples fabricated on PI substrates;
(b) TEM image of the same sample………………………………….78
Figure 5.5 Room temperature PL spectra of the ZnO nanocrystals for deposited
10 min on quartz substrates……………………………….………….79
Chapter 6 Formation of Inverted Hexagonal Liquid Crystal in Mixtures
of Amine-metal Hydroxides
Figure 6.1 Phase diagram for the ternary mixture oleic acid/1-decanol/
ammonium hydroxide system at 25 °C………………………………86
Figure 6.2 POM textures of oleic acid/1-decanol/ ammonium hydroxide
(35/38/27) at (a) 70 °C and (b) 25 °C recorded during the cooling
from Ti (95 °C)……………………………………………………….87
Figure 6.3 X-ray diffraction patterns of oleic acid/1-decanol/ ammonium
hydroxide solution (52/15/33) at (a) 25 °C and (b) 55 °C……………88
Figure 6.4 Schematic representation of a three-dimensional network of the inverted
hexagonal phase…………………………………………………….………..89
Chapter 7 Preparation of Silver Nanocables from Self-assembling
Tubular Silver ion Precursors
Figure 7.1 Images of the dark-field optical microscopy for a diamminesilver-(І)
oleate gel at a molar ratio of 30 before (a, b) and after (c) dispersion
in ethanol……….…………………………………………………….97
Figure 7.2 TEM micrographs (unstained) of a diamminesilver-(І) oleate gel at
a molar ratio oleic acid/Ag+ of 30 (a) and 50 (b-d)…….…………….98
Figure 7.3 Bright-field TEM micrographs of nanocables after reduction of a gel
with a molar ration oleic acid/Ag+ of 50 (a-c) and a dark-field TEM
micrographs (d, top) and the corresponding silver profile across the
nanocable (d, bottom)………………………………………………..99
Figure 7.4 TEM micrographs of the reduction products made by fast addition
of KOH (a-c) and substituting NaBH4 for formaldehyde (d)…...…..100
Figure 7.5 Schematic structure of the oleic acid/Ag+ nanotube………………..101
Figure 7.6 FT-IR spectra of oleic acid, the nanotubes, and silver nanocables....103
Figure 7.7 Coordination types of diamminesilver-(І) oleate…………………..104
Table list
Chapter 1 Literature Review: Preparation and Characterization of
Polyimides
Table 1.1 Electron affinity of aromatic dianhydridesa…………………………..9
Table 1.2 Basicity pKa of diamines and their reactivityes toward PMDA….…...9
Chapter 2 Electroluminescence and Electron Transport Characteristics
of Aromatic Polyimides
Table 2.1 Inherent viscosity of the PAAs and thermal properties of the APIs....33
Chapter 3 Vapor Deposition Polymerization of Aromatic Polyimides
for Electroluminescent Devices
Table 3.1 Electrochemical potentials and energy levels of the polyimides……55
Chapter 4 Characterization of Polyimide/ZnO Nanohybrid Films
Table 4.1 Coefficient of thermal expansion of pure PI and PI/ZnO nanohybrid
films………………………………………………………………….65
Table 4.2 Glass transition temperaturesa of pure PI and PI/ZnO nanohybrid
films………………………………………………………………….68
Table 4.3 Thermogravimetric analysis of pure PI and PI/ZnO nanohybrid
films………………………………………………………………….69
Chapter 6 Formation of Inverted Hexagonal Liquid Crystal in Mixtures
of Amine-metal Hydroxides
Table 6.1 Phase behaviour of the ternary mixtures……………………..……...87
[1] M. K. Ghosh and K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker: New York, 1996.
[2] D. Wilson and P. Hergenrothe (Ed:H. D. Stenzenberger), Polyimides, Chapmam & Hall, London, 1990.
[3] Z. Ahmad, J. E. Mark. Chem. Mater. 2001, 13, 3320.
[4] M. J.M. Abadie, V. Y. Voytekunas, A. L. Rusanov. Iranian Polym. J. 2006. 15. 65.
[5] M. Ree, T. J. Shin, S. W. Lee. Korea Polym. J. 2001, 9, 1.
[6] M. Ree. Macromol. Res. 2006, 14, 1.
[7] Y. N. Sazanov. Russ. J. Appl. Chem. 2001, 74, 1217.
電子全文
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
低介電多面體倍半矽氧烷寡聚物(POSS)/聚亞醯胺奈米複合材料之合成與性質分析
2.
聚亞醯胺/黏土奈米複合材料之合成及性質之研究
3.
共價鍵結之Kenyaite/聚亞醯胺奈米複合材料之合成與物性
4.
溶凝膠法製備聚亞醯胺-有機矽酸鹽複合材料及其性質研究
5.
聚(亞醯胺/矽氧)共聚合物及含無機氧化物混成奈米複合材料之製備與性質研究
6.
聚亞醯胺/氧化鋅奈米複合材料之製備及性質之研究
7.
聚亞醯胺奈米複合材料及奈米孔洞膜材之製備與性質研究
8.
聚醯亞胺/蒙脫土奈米複合材料之合成與特性探討
9.
黏土/聚亞醯胺奈米複合材料之合成與性質
10.
奈米介孔材料製備與應用特性研究
11.
利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究
12.
新穎聚亞醯胺高分子與低介電材料合成及其性質研究
13.
低介電含氟多面體倍半矽氧烷寡聚物/聚亞醯胺奈米複合材料合成與特性之研究
14.
奈米碳管/高分子奈米複合材料薄膜之導電性質研究:碳管表面接枝,π-π交互作用,與奈米金粒子模附效應
15.
利用同步形成法製備聚亞醯胺/二氧化鈦奈米混成薄膜之特性分析與界面黏著性質之探討
1.
羅文基(2001)。新世紀的教改議題-生命教育。翰林文教雜誌,17,6-7。
2.
簡錫昌(2004)。從領域課程看國小生命教育課程規劃與教學設計。南投文教,21,27- 29。
3.
簡茂發(1983)。國小兒童友伴關係的相關因素之分析。教育心理學報,16,71-88。
4.
錢永鎮(2002)。思考與體驗。學生輔導,79,121-146。
5.
鄭崇趁(2001)。生命教育的目標與策略。教育資料與研究,39,18- 20。
6.
鄭石岩(2000)。生命教育從何著手。北縣教育,33,18-24。
7.
楊錦登(2000)。人際關係相關理論之探討。學生輔導通訊,69,104-113。
8.
楊永慶(2000)。從佛教看生命教育。北縣教育,33,46-52。
9.
曾月菊(2002)。父母如何影響孩子的人際關係。輔導通訊,69,54-60。
10.
陳騰祥(2002)。國小階段推展生命教育的理念與做法。國教輔導,41(5),38-41。
11.
陳靜宜(1997)。國小五年級學童性別、自我概念與人際關係相關之研究。傳習,15,1-
12.
陳李綢(1983)。國小兒童自我概念發展之研究。測驗年刊,30,93-100。
13.
張淑美(1995)。從自我概念談青少年的自我追尋與其輔導。學生輔導通訊,36,88-
14.
洪若和(1995)。國小兒童國小兒童自我概念之相關研究。臺東師院學報,6,91-134。
15.
李佩怡(1999)。人際關係理論。測驗與輔導,152,3152-3156。
1.
化學方法製備鎳奈米顆粒及鎳薄膜於軟性聚亞醯胺基板上與特性研究
2.
利用溶膠-凝膠法製備聚亞醯胺/二氧化鈦奈米混成薄膜及其特性研究
3.
超疏水之聚亞醯胺/氟矽烷混成薄膜製備與特性分析
4.
單軸延伸聚亞醯胺薄膜光學異向性之研究
5.
分子類神經網路於數位影像處理的應用
6.
應用非結構性網格之平行化三維PIC-FEM程式的研究與發展
7.
矽鍺與矽碳薄膜應用於金氧半場效電晶體和複晶矽鍺與多通道薄膜電晶體之研究
8.
以SAP.NETConnector實作Web共同作業平台
9.
三維多邊形處理、檢索及驗證方法
10.
以隨機與邏輯推理運算方式進行高涵蓋率之測試
11.
功能性聚亞醯胺導熱型複合材料之合成與性質研究
12.
軟性電路板及電極之製備與特性研究及其於有機太陽能電池之應用
13.
無線應用之正交頻分多工傳收器設計
14.
移動向量精煉新方法運用於視訊處理和視訊轉換編碼的研究
15.
應用田口方法於動態存取記憶體深溝製程技術之改善
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室