跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王廷君
研究生(外文):Ting-Chun Wang
論文名稱:改良式鑲崁製程應用於奈米半導體製程及其可靠性改善之研究
論文名稱(外文):A Study on Modified Damanscene Process Applied to Nano Process for Semi-Conductor and Reliability Improvement
指導教授:謝宗雍
指導教授(外文):Tsung-Eong Hsieh
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:125
中文關鍵詞:半導體製程可靠度鑲崁製程化學機械研磨銅製程物理氣象沉績
外文關鍵詞:semi-conductorreliabilitydamascenechemical mechanical polishCu processPVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:905
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究製造一個穩定可靠的奈米積體電路製程。當積體電路微縮到奈米的程度時,可以有效的達到增加元件密度、多功能及效能的目的。然而,也因為微縮到奈米的程度而導致這些特性會隨著導線的特性而變化。鑲崁式的結構開發已成功的被應用於現今的半導體製程中以克服上述的問題。在鑲崁式結構的應用中,窄溝隔離 (Shallow Trench Isolation, STI)的製程式最先被應用的。在此製程中一個相當關鍵的技術就是化學機械研磨(Chemical Mechanical Polish, CMP)製程。尤其是在此製程的清潔步驟。一個新的清潔步驟被開發即利用多化學藥劑噴灑清潔的原理再配合刷洗效果而找出具有50%缺陷數減少即最低的金屬含量。
此外在半導體後段製程中,銅的鑲崁式結構亦被應用。金屬導線傳輸的速度會隨尺寸之縮短而更遲緩,衍生所謂電阻-電容時間延遲(RC Delay Time);在内連線結構中,使用低阻值與低介電常數是一可行且克服此一問題的方法。為了改善銅的擴散問題,一個新的阻隔層被開發。我們利用化學機械研磨所導致的淺碟效應在覆蓋上氮化鉭(Tantalum Nitride, TaN)以避免銅的擴散與氧化腐蝕。實驗結果顯示此一新的結構可以成功的改善可靠度與氧化腐蝕的問題,但一新的結構卻會因為氮化鉭的導入增加7.9%的阻值。此外,我們也研究了不同種類的銅擴散阻絕層的織構(Texture),在氮氣流量為0到30sccm時有最大的(111)/(200) 織構比例。
再者,銅導線的表面覆蓋亦是一個重要的關鍵製程。我們研究發現不同種類的銅導線覆蓋阻絕層,如氮化矽(Silicon Nitride, SiN)、碳氮化矽(Silicon Nitricarbide, SiCN)和碳氧化矽(Silicon Oxycarbide, SiCO)等分別對低介電質材料之性質有所影響。在使用OSG (Organo-Silicate Glass)與碳氧化矽的結構中會降低相對於FSG (Fluorosilicate Glass)與氮化矽傳統結構16%的電容值。而FSG/SiCO更會降低10%的電容值。然而研究結果顯示以氮化矽作銅導線覆蓋阻絕層所得到的電子遷移現象(Electro-migration, EM)卻是最佳的。因此為了降低電容值而導入不同種類的覆蓋阻絕層必須考慮因為碳與氧的導入因而影響與銅導線的附著力的整體結果。此外,實驗結果亦顯示出以碳氧化矽作銅導線覆蓋阻絕層所得到的因應力所導致的空孔現象是比其他的阻絕層來的佳。
This thesis work studies the methods to fabricate a robust nano IC device. As integrated circuit manufacture moving to nano scale, scaling down of the device was very effective in achieving the goals of increased device density, functional complexity and performance. However, scaling down of the devices became less profitable, and speed and complexity were dependant on the characteristics of interconnects that wired the devices. Damascene structure was developed and successfully applied into semiconductor industry for the above purposes. This structure is widely used in present semi-conductor process. Shallow trench isolation (STI) process is the first-step damascene structure for nano-device in FEOL. Another key process for damascene established is Chemical Mechanical Polishing (CMP) process. Post clean of CMP process in STI is a key problem. A new modified multi-chemicals spray cleaning process for post STI CMP has been developed. This cleaning sequence provides a 50% lower level defect and metallic contamination than the traditional post-CMP cleaning process. A total cleaning formula: “APM+HF dip 15sec+HPM” , is capable of removing virtually all major metallic ions down to below the detection limit of TXRF.
Incorporation of low resistivity and low-dielectric-constant materials in multilevel interconnect can effectively reduce capacitance, thus decreasing the transmission delay. A new scheme is develop for a barrier layer of the Cu diffusion to improve the Back-End-of-Line (BEOL) Cu reliability. According to the behavior of dishing and erosion in Cu CMP process, a completely enclosed Cu structure is developed. By capping a thin TaN layer on Cu, the Cu surface was effectively isolated from the oxidative ambient and the corrosion. The Rs of Cu containing TaNx cap provides 7.9% increment on resistance than that without TaNx cap. Furthermore, The texture of the IMP-Cu films was found to depend on the grain size of the IMP-TaNx films. The (111)/(200) ratio of the Cu seed layers had the maximum value as the nucleation sites of the TaNx deposition increased with increasing the N2 flow rate from 0 to 30 sccm.
Furthermore, Cu surface capping layer is also a key process for Cu diffusion barrier layer. This part of works investigated the physical properties, thermal stability, and integrated electrical performance for SiN, SiCN and SiCO dielectric barrier films. The total capacitance of the low-k (OSG; k = 3.0)/SiCO structure can be reduced by about 16% compared to the FSG (k = 3.5)/SiN structure. On the other hand, the total capacitance of the FSG/SiCO structure can also be reduced by about 10%. But the electromigration resistance of Cu with SiN is much better than that with SiCN or SiCO film, while the SiCO structure showing the worst results. As a result, it can be seen that the option of a low-dielectric constant barrier dielectric is essential in reducing the total capacitance of interconnects. Although SiCN and SiCO achieve a reduced dielectric constant, the biggest challenge is to achieve comparable robust integration as the C and O doping into the dielectrics causes integration problems, such as poor adhesion with Cu and a higher coefficient of thermal expansion. Experimental results show that SiCO films have the best stress-induced voiding resistance as a consequence of a lower and stable temperature–stress curve, but this is offset by poor electromigration due to poor adhesion.
Contents Pages
Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgements v
Contents vi
Figure Captions ix
Table Captions xiv
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2-1 Single damascene structure and application 4
2-2 Dual damascene structure and application 6
2-2-1 Scaling and RC delay Issue 7
2-2-2 Cu dual damascene technologies 11
2-2-3 Cu diffusion barrier 13
2-2-4 CMP mechanisms and behaviors 18
2-2-5 Post clean of CMP 24
2-2-6 Reliability of Cu damascene process 26
Chapter 3 Experimental 30
3-1 Experimental method for post cleaning of STI CMP 30
3-1-1 STI structure and STI CMP process 31
3-2 Experimental method for the diffusion barrier of completely enclosed Cu structure 34
3-2-1 Completely enclosed Cu structure 35
3-3 Experimental method for the EM and SM improvement on Cu dual damascene Interconnection 38
3-3-1 Material preparation for the EM and SM improvement on Cu dual damascene interconnection 39
3-4 Experimental method for the characteristics of Cu diffusion barrier dielectrics 41
3-4-1 Material preparation for characteristics of Cu diffusion barrier dielectrics 42
3-5 Characterizations and Analysis 43
3-5-1 Auger Electron Spectroscopy (AES) 43
3-5-2 Secondary Ion Mass Spectroscopy (SIMS) 44
3-5-3 Field Emission Scanning Electron Microscopy (FE-SEM) 44
3-5-4 Transmission Electron Microscopy (TEM) 44
3-5-5 Capacitance-Voltage Characteristics (C-V) 44
Chapter 4 Results and Discussion 45
4-1 A modified multi-chemical spray cleaning process for post shallow trench isolation chemical mechanical polishing cleaning application 45
4-1-1 Result 45
4-1-2 Discussion 48
4-2 Texture Evolutions of Ionized Metal Plasma Cu Seed Layers on Tantalum Nitride Barriers 51
4-2-1 Results and Discussion 51
4-3 Copper surface protection with a completely enclosed copper structure for a damascene process 57
4-3-1 Results and Discussion 57
4-3-1-A. Pattern dependence of dishing and erosion phenomenon 57
4-3-1-B. TaN cap process for Cu corrosion prevention and thermal stability improvement 57
4-4 Stress Migration and Electro-Migration Improvement for the Copper Dual Damascene Interconnection Process 66
4-4-1 Results and Discussion 66
4-5 Gap filling Improvement for the Copper Dual Damascene Interconnection Via Process 76
4-5-1 Results and Discussion 76
4-6 Comparison of Characteristics and Integration of Copper Diffusion-Barrier Dielectrics 83
4-6-1 Results and Discussion 83
4-6-1-A. Physical properties 83
4-6-1-B. Capacitance Reduction 85
4-6-1-C. Cu barrier ability against the Cu penetration 86
4-6-1-D. Adhesion strength between Cu and low-dielectric film 87
4-6-1-E. Electrical performance 88
4-6-1-F. Metal line-to-line leakage current 89
4-6-1-G. Electromigration (EM) 90
4-6-1-H. Stress-induced-void migration (SM) 93
4-7 Integration of Trimethylsilane-Based Organosilicate Glas and Organo Fluorinatted Silicate Glass Dielectric Thin Films For Cu Damascene Process 96
4-7-1 Results and Discussion 96


Chapter 5 Conclusions and Prospective Works 106
References 109
Curriculum Vita 118
[1]. N. Itoh, C. Yoshino, S. Matsuda, Y. Tsuboi, K. Inou, Y. Katsumata, H. Iwai, , Bipolar Circuit and Technology Meeting, IEEE 1992, p. 104.
[2]. B. Davari, C.W. Koburger, R. Schulz, IEDM Tech. Dig. (1998) p.89
[3]. S.S. Cooperman, A.I. Nasr, G.L. Gyula, J. Electrochem. Soc. 142 (1995), p.3180.
[4]. I. Ali, M. Rodder, S.R. Roy, G. Shinn, M. Islam Raja, J. Electrochem. Soc. 142 (1995), p.3088.
[5]. L.J. Chen, Y.H Lee, C.C. Diao, T.H. Chen, G.G. Luo, J.H. Ho, Proc. 1st Int. Chemical-Mechanical Polish for VLSI/ULSI Multilevel Interconnection Conf., 1996, p. 307.
[6]. C. Yu, S. Poon, Y.Limb, T.Yu and J.K. Lein. VIMIC Proceeding, 1994, p144.
[7]. S.P. Murarka, I.V. Verner and R.J.Gutmann, Copper-Fundamental Mechanisms for Microeclectronic A pplications, Wiley, New York, 2000.
[8]. J.G..Ryan, R.M.Geffken, N.R. Poulin, and J.R. Paraszczak, IBM J.Res. Dev., 39(1995), p.371
[9]. B.H. Howard, S.K. Wolterman, W.J. Woo, B. Gittleman, and C.Steinbruchel, Mater. Res. Soc. Sump. Proc., 201 (1991). p.129
[10]. B.J.Howard and C.Steinbruchel, Appl. Phys. Lett., 59(8) (1999). p.914
[11]. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (1998, 2003)
[12]. S. Wolf, Silicon Processing for VLSI Era II, Process Integration 45, McGraw-Hill, New York, 1991.
[13]. P. Sallagoity, F. Gaillard, M. Rivoire, M. Paoli, M. Haond, STI process steps for sub-quarter micron CMOS, Microelectron. Reliab. 38 (1998), p.271.
[14]. S.-Y. Jeong, S.-Y. Kim, Y.-J. Seo, A study on the reproducibility of HSS STI–CMP process for ULSI applications, Microelectron. Eng. 66 (2003), p.480.
[15]. S.-Y. Kim, C.-I. Kim, E.-G. Chang, Y.-J. Seo, T.-H. Kim, W.-S. Lee, An optimized nitride residue phenomena of shallow trench isolation (STI) process by chemical mechanical polishing (CMP), in: Proceedings of 4th IUMRSICEM-98, 468, Cheju Korea, p.24–27 August 1998.
[16]. L.J. Chen, Y.H Lee, C.C. Diao, T.H. Chen, G.G. Luo, J.H. Ho, Proc. 1st Int. Chemical-Mechanical Polish for VLSI/ULSI Multilevel Interconnection Conf., 307,1996.
[17]. Y. Taur, Y.-J. Mii, D.J. Frank, H.-S. Wong, D.A. Buchanan, S.J. Wind, S.A. Rishton, G.A. Sai-Halasz, E.J. Nowak, CMOS scaling into the 21st century: 0.1 mM and beyond, IBM J. Res. Dev. 39 (1995), p.245.
[18]. Internet web site: http://www.research.ibm.com/, IBM, 2003.
[19]. A.K. Bates, M. Rothschild, T.M. Bloomstein, T.H. Fedynyshyn, R.R. Kunz, V. Liberman, M. Switkes, Review of technology for 157 nm lithography, IBM J. Res. Dev. 45 (2001) , p.605.
[20]. F. Bernard, Advanced optical lithography development, from UV to EUV, Micro. Eng. 61–62 (2002) p.11–24.
[21]. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, H. Wolf, Printing meets lithography: soft approaches to high-resolution patterning, IBM J. Res. Dev. 45 (5) (2001) , p.697
[22]. S. Wolf, R. Tauber, Silicon Processing for VLSI Era, McGraw-Hill, New York, 1991.
[23]. Jin-Kun Lan, Chuen-Guang Chao, Yi-Lung Cheng, and Ying-Lang Wang, “ Effect of substrate on the step coverage of plasma-enhanced chemical-vapor deposited tetraethylorthosilicate films”, J. Vac. Sci. Technol, B 2(14), 398-399, (2003), p.533-538.
[24]. S.P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, Butterworth-Heinemann, Boston, 1993.
[25]. S.P. Murarka, Solid State and Materials Science, 20(2) (1995), p.87
[26]. D.C. Edelstein, Proceedinds of IEEE VMIC, 301 (1995)
[27]. J.A. Lee, M. Moinpour, H.-C. Liou, T. Abell, in: Proceedings of Materials Research Society, San Francisco, CA, 2003, p.74.
[28]. S.H. Liu, E. Tolentino, Y. Lim, and A. Koo, J. Electro. Mater., 30 (2001), p. 299-303.
[29]. M. Vogt, M. Kachel, M. Plotner, and K. Drescher, Microelectronic Engineering, 37-38(1997), p. 181-187.
[30]. M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, IEDM (2000) , p157-160.
[31]. B.Y. Tsui, K.L. Fang, and S.E. Lee, IEEE Transactions on Electron Devices, 48 (2001) , p.2375-2383.
[32]. M. Fayolle, G. Passemard, M. Assous, D. Louis, A. Beverina, Y. Gobil, J. Cluzel, and L. Arnaud, Microelectronic Engineering, 60 (2002) , p. 119-124.
[33]. G. Passemard, O. Demolliens, C.H. Lecornec, P. Noel, J.C. Maisonobe, P. Motte, J. Palleau, F. Pires, L. Ravel, J. Torres, and F. Vinet, VLSI Multilevel Interconnection Conference (VMIC) (1998), p. 63-68.
[34]. J.M. Steigerwald, S.P. Murarka, and R.J.Gutmann, Chemical-Mechanical Planarization of Microelectronic Materials, Wiley Inter-science, New York, 1997.
[35]. J.M. Steigerwald, R. Zinpoli, S.P. Murarka, D. Price, and R.J. Gutmann, J. Electrochem, Soc., 141(10) (1994), p.2842.
[36]. J.M. Steigerwald, Rensselaer Polytechnic Institue, Ph.D. Thesis, Troy, New York, 1995.
[37]. A.P. Youmans, Method of chemical polishing of planar structures having filled grooves therein, US Patent No.3,911,4562. Signetics Corporation, Sunnyvale, CA, Oct. 14, 1975.
[38]. E.R. Webber, Appl. Phys., A30 (1983), p.1
[39]. E.R.Webber, and N. Wiehl, Mat. Res. Soc., 36 (1985) p.3
[40]. J. Reid, S. Mayer, E. Boardbent, E. Klawuhn, K. Ashtiani, Solid technology, 86 Jun (2000)
[41]. S. K. Lakshmanan and W. N. Gill, Thin Solid Films, 338 (1999) , p.24
[42]. S.Y. Chiu, Y.L. Wang, S.C. Chang and M.S. Feng, Thin Solid Films, 478(1-2) (2005),p293.
[43]. J.S. Park, H.S. Park, and S.W. Kang, J. Electrochem. Soc., 149, 1, (2002) p. 28-32,.
[44]. K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, J. Appl. Phys., 71, (11) (1992) p. 5433-5443.
[45]. Y. Tanaka, E. Kim, J. Forster, and Z. Xu, J. Vac. Sci. Technol. B, 17(2) (1999), p. 416-422.
[46]. Y. Kang, C. Lee, and J. Lee, Mater. Sci. Eng., B75 (2000) , p. 17-23.
[47]. S.W. Hong, C.H. Shin, and J.W. Park, J. Electrochem. Soc., 149(1) (2002), p. 85-88.
[48]. S.W. Hong and J.W. Park, Electrochem. Solid-State Lett., 5(12)(2002), p.107-109.
[49]. T.Hara, K.Sakata, and Y.Yoshida, Electrochem. Solid-State Lett., 5(3)(2002), p. 41-43.
[50]. C.-K. Hu, R.Rosenberg, H.S.Rathore, D.B.Nguyen, B.Agarwala, In Interconnect Technology Conference Proceedings of the IEEE 1999 International, San Francisco, CA , USA, 1999, p.267-269.
[51]. T.Oshima, T.Tamaru, K.Ohmori, H.Aoki, H.Ashihara, T.Saito, H.Yamaguchi, M.Miyauchi, K.Torii, J.Murata, A.Satoh, H.Miyazaki, K.Hinode, in Technical Digest of IEDM, 2000, P123-126.
[52]. T.C. Wang, T.E. Hsieh, Y.L. Wang, Y.L. Wu, K.Y. Lo, C.W. Liu and K.W. Chen, Thin Solid Films, 447-448 (2004) p.542-548.
[53]. S.H. Li, R. Miller, Chemical Mechanical Polishing in Silicon Processing, 63, Academic Press, New York, 2000,
[54]. F.Preston, J. Soc. Glass Technology, 11(1927),p214.
[55]. M. Pourbaix, Lectures on Electrochemical corrosion, Plenum Press, New York (1976)
[56]. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX (1975)
[57]. J. Hernandez, J. Electrochem. Soc., 148 (7) (2001), p. 389
[58]. L. Zang, Ph.D. dissertation, University of Arizona, 1998.
[59]. A.A Busnaina and F.Dai, Semiconductor Internal,, 20(1997),p.85
[60]. W. Krusell, J. de Larios, and J. Zang, Solid tate Technol.,38 (1995), p.109.
[61]. G. A. Parks, Chem. Rev., 65 (1965) , p.177.
[62]. E. T. Ogawa, K. D. Lee, V. A. Blaschke, and P. S. Ho, “ Electromigration reliability issues in dual-damascene Cu interconnection” IEEE Trans. on reliability, vol 51, 2002, pp 403-419.
[63]. [6] A. H. Fischer, A. V. Glasow, S. Penga, F. Ungar, “ Electromigration failure mechanism studies on copper interconnects” Interconnect Technology Conference, 2002. Proceedings of the IEEE 2002 International, 3-5 June 2002, p 139-141.
[64]. Z. Tokei, F. Lanckmans, G. Van den bosch, M. Van Hove, K. Maex, H. Bender, S. Hens, J. Van Landuyt, “Reliability of copper dual damascene influenced by pre-clean” Physical and Failure Analysis of Integrated Circuits, 2002. IPFA 2002. Proceedings of the 9th International Symposium, 8-12 July 2002, p 118-123.
[65]. T. Suzuki, S. Ohtsuka, A. Yamanoue, T. Hosoda, T. Khono, Y. Matsuoka, K. Yanai, H. Matsuyama, H. Mori, N. Shimizu, T. Nakamura, S. Sugatani, K. Shono, H. Yagi, “ Stress induced failure analysis by stress measurements in copper dual damascene interconnects” Interconnect Technology Conference, Proceedings of the IEEE 2002 International, 3-5 June 2002, p 229-230.
[66]. K. Ishikawa, T. Iwasaki, T. Fujii, N. Nakajima, M. Miyauchi, T. Ohshima, J. Noguchi, H. Aoki, T. Saito, “Impact of metal deposition process upon reliability of dual-damascene copper interconnects” Interconnect Technology Conference, 2003. Proceedings of the IEEE 2003 International , 2-4 June 2003, p 24-26.
[67]. G. B. Alers, R. T. Rozbicki, G. J. Harm, S. K. Kailasam, G. W. Ray, M. Danek, “Barrier-first integration for improved reliability in copper dual damascene interconnects” Interconnect Technology Conference, 2003. Proceedings of the IEEE 2003 International, 2-4 June 2003, p 27-29.
[68]. E. T. Ogawa, J. W. McPherson, J. A. Rosal, K. J. Dickerson, T. C. Chiu, L. Y. Tsung, M. K. Jain, T. D. Bonifield, J. C. Ondrusek, W. R. McKee, “Stress-induced voiding under vias connected to wide Cu metal leads” Reliability Physics Symposium Proceedings, 2002. 40th Annual , 7-11 April 2002, p 312-321.
[69]. C. Y. Chang and S. M. Sze, ULSI Technology, McGRAW-HILL, 1996
[70]. H. B. Huntington and A. R. Grone, “ Current Induced Marker Motion in Gold Wires,” J. Phy. Chem. Solids, 20, 1961, p. 76.
[71]. T. Kwok and P. S. Ho, “ Elecromigration in Metallic Thin Film,” in D. Grupta and P. S. Ho eds., Deiffusion Phenomena in Thin Films and Microelectronic Materials, Noyes Publications, Park Ridge, NJ, 1988, p. 369.
[72]. J. R. Black, “ A Brief Survey and Some Recent Results,” IEEE Trans. Electron Dev. ED 16, 1969, p. 338.
[73]. J. R. Black, “Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices,” Proc. IEEE, 57, 1969, p. 1587.
[74]. I.J. Malik, J. Zhang, A.J. Jensen, A Model Study for Post CMP Cleaning, MRS Proceeding, Spring 1995.
[75]. W. Kern, D.A. Puotineu, Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology, RCA Review, June 1970, p.187.
[76]. C. Lingk and M. E. Gross “Recrystallization kinetics of electroplated Cu in damascene trenches at room temperature” J. Appl. Phys., 84, 1998, p 5547-5553.
[77]. C. Lingk, M. E. Gross, and W. L. Brown “Texture development of blanket electroplated copper films “ J. Appl. Phys., 87, 2000, p 2232-2236.
[78]. S. H. Brongersma, E. Richard, I. Vervoort, H.bender, W. Vandervorst, S. Lagrange, G. Beyer, and K. Maex, “ Two-step room temperature grain growth in electroplated copper “, J. Appl. Phys., 86, 1999, p 3642-3645.
[79]. T.C. Wang, T.E. Hsieh, M. T. Wang, D. S. Su, C. H. Chang, Y. L. Wang , and J. Y. M. Lee, “Stress Migration and Electro-Migration Improvement for the Copper Dual Damascene Interconnection Process”, J. Electrochemistry society, 152(1)(2005), G45-G49.
[80]. Y. W. Koh, K. P. Loh, L. Rong, A. T. S. Wee, L. Huang, and J. Sudijono, Jpn. J. Appl. Phys. 93 (2003) ,p.1241.
[81]. Z. C. Wu, Z. W. Shiung, C. C. Wang, K. L. Fang, R. G. Wu, Y. L. Liu, B. Y. Tsui, M. C. Chen, W. Chang, P. F. Chou, S. M. Jang, C. H. Yu, and M. S. Liang, Proceedings of 2002 Interconnect Technology Conference, June 5-7, 2000, p. 82.
[82]. C.–K. Hu, L. Gignac, E. L. Liniger, B. Herbst, D. L Rath, S. T. Chen, S. Kaldor, A. Simon, and W,-T, Tseng, Appl. Phys. Lett. 83 (2003) 869.
[83]. [18] C. L. Gan, C. V. Thompson, K. L. Pey, W. K. Choi, H. L. Tay, B. Yu, and M. K. Radhakrishnan, Appl. Phys. Lett. 79 (2001) 4592.
[84]. Oing-Tang Jiang; Ming-Hsing Tsai; Havemann, R.H.; Interconnect Technology Conference ,2001.Proceedings of the IEEE 2001 International, 4-6 June 2001, p.227-229.
[85]. R.P. Vinci ,E.M. Zielinski,J.C.Bravman, “Thermal Strain and Stress in Copper Thin Films”, Thin Solid Films, 262, 1995, p.142.
[86]. Y-L.Shen, S.Suresh, M.Y.He, A.Banchi, O.Kienzle,M.Ruhle, A.G.Evans, ”Stress Evolution in Passivated Thin Films of Cu on Silicon Substrates” , J. Mater. Res., 13,Jul 1998, p.1928.
[87]. S.Riedel-J. Rober-s.e. Schulz-T.GeBner, ”Stress in Copper Films for Interconnects”, Materials for Advanced Metallization. , 1997, p.148,
[88]. H.-K. Kang, J. S. H. Cho, and S. S. Wong, “Electromigration Properties of Electroless Plated Cu Metallization”, IEEE ELECTRON DEVICE LETTERS, 13, 1992
[89]. S. W. Hong, C. H. Shin, and J. W. Park, “Palladium activation on TaNx barrier films for autocatalytic electroless copper deposition,” J. Electrochem. Soc., vol. 149, no. 1, p. G85-G88, 2002.
[90]. S. W. Hong and J. W. Park, “Effect of nitrogen content in TaNx (x = 0-1) barrier substrates on electroless copper deposition,” Electrochem. Solid-State Lett., vol. 5, no. 12, p. C107-C109, 2002.
[91]. D. B. Knorr, D. P. Tracy, and K. P. Rodbell, “Correlation of texture with electromigration behavior in Al metallization,” Appl. Phys. Lett., vol. 59, no. 25, p. 3241-3243, 1991.
[92]. S. Vaidya and A. K. Sinha, “Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films,” Thin Solid Film, vol. 75, no. 3, p. 253-259, 1981.
[93]. H. Lee, S. S. Wong, S. D. Lopatin, “Correlation of stress and texture evolution during self- and thermal annealing of electroplated Cu films,” J. Appl. Phys., vol. 93, no. 7, pp. 3796-3804, 2003.
[94]. D. N. Lee, “Texture and related phenomena of copper electrodeposits,” Mater. Res. Soc. Symp. Proc., vol. 427, p. 167-178, 1996.
[95]. K. W. Lee, S. Lee, and J. W. Park, “Electroplated Cu and sputtered Ta crystallographic texture degradation in Cu/Ta/SiOF layered structures,” J. Electrochem. Soc., vol. 148, no. 3, p. C131-C135, 2001.
[96]. M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, Thin Solid Films, 270 (1995) 503.
[97]. N. Yamada and T. Takahashi, J. Electrochem. Soc., 147 (2000) 1477.
[98]. K. Yonekura, S. Sakamori, K. Goto, M. Matsuura, N. Fujiwara, and M. Yoned, J. Vac. Sci. Technol., B22 (2004), p.548.
[99]. Y. L. Cheng, Y. L. Wang, Y. L. Wu, C. W. Liu, J. K. Lan, M. L. O”eil, C. P. Liu, Chyung Ay, and M. S. Fen, Thin Solid Film, 447 (2004), p.681.
[100]. I. A. Blech, J. Appl. Phys., 47 (1976) 1203.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊