跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳文成
研究生(外文):Wen-Chen Wu
論文名稱:無電鍍鈷鎢磷薄膜應用於凸塊底層金屬化之擴散阻障層之研究
論文名稱(外文):A Study of Electroless Co(W,P) Thin Film as the Diffusion Barrier of Under Bump Metallurgy
指導教授:謝宗雍
指導教授(外文):T.-E. Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:鈷鎢磷凸塊底層金屬擴散阻障層
外文關鍵詞:Co(WP)UBMbarrier
相關次數:
  • 被引用被引用:4
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討以無電鍍法(Electroless Planting)所沉積的鈷鎢磷(Co(W,P))薄膜應用在銲錫底層金屬化(Under Bump Metallurgy,UBM)中之擴散阻障層(Diffusion Barrier)的可行性。實驗以預鍍鈦、銅兩層金屬薄膜的矽晶片基板模擬銅製程晶片,之後在基板表面沉積鈷鎢磷薄膜。實驗首先改變鍍液的pH值、離子濃度以及析鍍時間等變因,研究不同的鍍膜條件對鈷鎢磷薄膜成分、結構之影響;再將各種不同條件長成的無電鍍鈷鎢磷薄膜與銲錫施予液態時效(Liquid-state Aging)與固態時效(Solid-state Aging)測試,研究無電鍍鈷鎢磷薄膜應用在UBM層時,其與銲錫的合金化反應以及擴散阻擋之能力。
實驗結果顯示,當鍍液之pH值在8.0至9.0範圍內,鍍率有隨著pH值上升而降低的趨勢,但此同時增加鈷鎢磷薄膜中的磷含量、減少結晶程度與提升表面平整度。當鍍液pH值達到8.6以上,薄膜結構逐漸轉變為非晶質態(Amorphous),但在長時間析鍍後,由於鍍液中離子濃度的消耗造成磷含量降低,薄膜的結構終將轉變為多晶。與銲錫之液態與固態時效試驗顯示,鈷鎢磷薄膜與銲錫會生成針狀CoSn2介金屬相,鈷鎢磷薄膜之消耗顯示其阻障行為類似犧牲型擴散阻障層(Sacrificial Barrier),而磷、鎢等元素填塞在奈米微晶晶界所發揮之阻障效果亦使鈷鎢磷薄膜具備填塞型阻障層(Stuffed Barrier)之行為;1至2 at.%鎢的加入對於合金化反應的速率、擴散阻擋能力等有明顯助益,再加上它使薄膜對於銅原子的阻擋能力的提升,使用無電鍍鈷鎢磷薄膜為阻障層有助於提升銅製程晶片凸塊接點之長時間可靠度。
This work prepares electroless cobalt-tungsten-phosphorus (Co(W,P)) thin films to serve as the diffusion barrier of under bump metallurgy (UBM) for flip-chip Cu-ICs. The Si wafer pre-deposited with a Ti/Cu bi-layer to simulate the Cu-IC chips was adopted as the substrate for electroless Co(W,P) deposition. In the first part of the study, we varied the parameters of electroless deposition such as pH values, plating solution concentrations and deposition times so as to investigate their effects on the composition and crystal structure of Co(W,P) films. Liquid- and solid-state aging tests of eutectic PbSn solder/Co(W,P) samples were also carried out in order to characterize the evolution of intermetallic compounds (IMCs) at the interface and the diffusion barrier capability of the electroless Co(W,P) films.
Experimental results found that the deposited rate decreases with the pH values in the range of 8.0 to 9.0, however, it led to the increase of phosphorus content, the decrease of crystallinity and the improvement of surface flatness of Co(W,P) films. The Co(W,P) films became amorphous when pH values exceeded 8.6, but the film crystallinity increased when the plating solution was subjected to long-time usage due to the consumption of ionic components in the solution. The liquid- and solid-state aging tests revealed the formation of needle-like CoSn2 phase at solder/Co(W,P) interface. The consumption of Co(W,P) films revealed they essentially served as the sacrificial diffusion barrier; however, the diffusion retardation by P and W elements residing in the grain boundaries of nanocrystals indicated the electroless Co(W,P) films are also stuffed barriers. About 1 to 2 at.% tungsten (W) in the Co(W,P) film further retarded the diffusion of Cu into Co(W,P) films and suppress the reaction rate with solder. For these reasons, the addition of W benefited the reliability of solder joints and electroless Co(W,P) films were one of ideal barrier layers in UBM of flip-chip Cu-ICs.
摘要………..…………………………………………………………………………...i
Abstract………………………………………………………………………………ii
誌謝…………………...………………………………………………………………iv
目錄……………………………………………………………………………………v
圖目錄……………………………………………………………………………….viii
表目錄…………………………………………………………………………………x
第一章 序論…………………………………………………………………………..1
第二章 文獻回顧……………………………………………………………………..3
2-1. 銅製程簡介………………………………………………………………………3
2-2. 封裝連線技術(Interconnection Technologies for Electronic Packaging)………5
2-2-1. 覆晶接合技術……………………………………………………………7
2-2-2. 覆晶接合凸塊的結構與製作…………………..………………………..8
2-2-3. 擴散阻障層……………………………………………………………..11
2-3. 無電鍍鎳磷合金在UBM之應用………………………………………….…..12
2-4. 無電鍍鈷鎢磷薄膜…………………………………………………….……….14
2-5. 無電鍍原理……………………………………………………………………..16
2-5-1. 無電鍍鈷鎢磷化學反應………………………………………………..18
2-6. 研究動機………………………………………………………………………..19
第三章 實驗方法……………………………………………………………………21
3-1. 無電鍍鈷鎢磷薄膜的製備……………………………………………………..21
3-1-1. 基板製備與清洗………………………………………………………..21
3-1-2. 試片前處理……………………………………………………………..21
3-1-3. 鍍液的配製與無電鍍方法……………………………………………..23
3-2. 鍍膜結構與成分分析………………………………………………………….25
3-2-1. 鍍率的量測……………………………………………………………..25
3-2-2. pH值的影響……………………………………………………………..26
3-2-3. 鎢酸鈉的影響…………………………………………………………..26
3-2-4. 鍍膜時間的影響………………………………………………………..26
3-3. 與銲錫之合金反應測試……………………………………………………….26
3-3-1. 液態時效試驗…………………………………………………………..27
3-3-2. 固態時效試驗…………………………………………………………..27
第四章 結果與討論…………………………………………………………………29
4-1. 前處理到薄膜的析鍍………………………………………………………..29
4-1-1. 粗化處理………………………………………………………………..29
4-1-2. 敏化及活化處理………………………………………………………..29
4-1-3. 鍍膜表面形貌與成分分析……………………………………………..31
4-2. pH值的影響…………………………………………………………………….33
4-2-1. 對鈷鎢磷薄膜成分的影響……………………………………………..33
4-2-2. 對鈷鎢磷薄膜結構的影響……………………………………………..33
4-2-3. 對鈷磷薄膜成分的影響………………………………………………..36
4-2-4. 對鈷磷薄膜結構的影響………………………………………………..37
4-2-5. 對鍍率之影響…………………………………………………………..38
4-2-6. 對薄膜表面粗糙度的影響……………………………………………..40
4-3. 鎢酸鈉的影響………………………………………………………………….42
4-3-1. 對薄膜成分的影響……………………………………………………..42
4-3-2. 對鍍率之影響…………………………………………………………..43
4-4. 鍍膜時間的影響……………………………………………………………….44
4-4-1. 對試片表面形貌的影響………………………………………………..44
4-4-2. 磷含量EDS分析……………………………………………………….46
4-5. 銲錫與無電鍍鈷鎢磷的合金反應……………………………………………47
4-5-1. 液態時效試驗…………………………………………………………..47
4-5-2. 晶體結構對擴散阻擋能力之影響……………………………………..51
4-5-3. 鎢對擴散阻障的影響…………………………………………………..53
4-5-4. 薄膜的晶粒成長現象…………………………………………………..54
4-5-5. 固態時效試驗…………………………………………………………..55
第五章 結論…………………………………………………………………………59
未來研究與展望……………………………………………………………………..61
參考文獻……………………………………………………………………………..62
1. John H. Lau, Flip Chip Technologies, McGraw-Hill, New York, (1996), p.1-26.
2. S.T. Chen and G.S. Chen, “Characterization of ultra thin electroless barriers grown by self-aligned deposition on silicon based dielectric films”, J. Electrochem. Soc., 151(2004), p.99-105.
3. 顏慧婷,“以無電鍍技術沉積鈷磷合金應用於銲錫擴散阻障層之研究”,國立交通大學材料與科學工程學系,碩士論文,民國94年。
4. A. Kohn, M. Eizenberg, Y. Shacham-Diamand and Y. Sverdlov, “Characterization of electroless deposited Co(W,P) thin film for copper metallization”, Mater. Sci. Eng., A302(2001), p.18-25.
5. A. Kohn, M. Eizenberg, Y. Shacham-Diamand, B. Israel and Y. Sverdlov, “Evaluation of electroless deposited Co(W,P) thin film as diffusion barriers for copper metallization”, Microelectronic Engineering, 55(2001), p.297-303.
6. A. Kohn, M. Eizenberg and Y. Shacham-Diamand, “The role of microstructure in nanocrystalline conformal Co0.9W0.02P0.08 diffusion barriers for copper metallization”, Applied Surface Science, 212-213(2003), p.367-372.
7. R. Singh and R.K. Ulrich, “High and low dielectric constant materials”, Electrochem., 7 (1999), p.26.
8. S. Hymes, S.P. Murarka, C. Shepard and W.A. Lanford, “Passivation of copper by silicide formation in dilute silane”, J. Appl. Phys., 71(1992), p.4263.
9. P.J. Ding, W.A. Landford, W. Wang, S. Hymes and S.P. Murarka, “Low-temperature passivation of copper by doping with Al or Mg”, Thin Solid Films, 262(1995), p.234-241.
10. J.M. Sterigerwald, S.P. Muraka, R.J. Gutmann, D.J. Duquette, “Chemical process in the chemical mechanical polishing of copper”, Mat. Chem. Phys., 41(1995), p.217.
11. C.W. Kaanta, S.G. Bombardier, W.J. Cote, W.R. Hill, G. Kerszykowski, H.S. Landies, D.J. Poindexter, C.W. Pollard, G.H. Ross, J.G. Ryan, S. Wolff, J.E. Cromin, “Dual damascene: a ULSI wiring technology”, IEEE VMIC Conf., (1991), p.144.
12. James W. Mayer and S.S. Lau, Electronic materials science: For integrated circuits in Si and GaAs, Macmillan, New York, (1990), p160-162.
13. Robert H. Havemann, and James A. Hutchby, “High performance interconnects: An integration overview”, Proceedings of the IEEE, Vol.89, No.5, May 2001.
14. 謝宗雍,微電子材料與製程,第十章,電子封裝技術,p385-467,2000年。
15. Peter Van Zant, Microchip Fabrication, 4th ed., McGraw-Hill, New York, (2000), p.560-561.
16. Leif Halbo and Per Ohlckers, Electronics Components, Packaging and Production, University of Oslo, Norway, (1995).
17. Marc-Aurele Nicolet, “Diffusion barriers in thin films”, Thin Solid Films, 52(1978), p.415.
18. T. Hodas and M. Hampden-Smith, The Chemistry of Metal CVD, Weinheim, New York, (1994), p.9-14.
19. S.F. Tai, A. Ourdjini, Y.L. Khong, V.C. Venkatesh and M. N. Tamin, “Effect of phosphorus content and solid state aging on intermetallic formation between lead-free Sn-Ag-Cu solder and electroless nickel/immersion gold under bump metallurgy”, Electronic Materials and Packaging, 2002 International Symposium on Advance Packaging Materials.
20. Sabine Anhock, Andreas Ostmann, Hermann Oppermann, Rolf Aschenbrenner and Herbert Reichl, “Reliability of electroless nickel for high temperature applications”, Electronic Materials and Packaging, 1999 International Symposium on Advance Packaging Materials.
21. K.C. Hung, Y.C. Chan and C.W. Tang, “Metallurgical reaction and strength of electroless Ni-P solder joints for advanced packaging applications”, J. of Mater. Sci., 11(2000), p.587-593.
22. Young-Doo Jeon, Kyung-Wook Paik, Kyung-Wook Bok, Woo-Suk Choi and Chul-Lae Cho, “Studies of electroless nickel under bump metallurgy-solder interfacial reactions and their effects on flip chip solder joint reliability”, J. Electro. Mater., 31(2002), p.520.
23. Haijing Lu, Cheah Li Kang, Stephen C.K. Wang and Hao Gong, “Evaluation of commercial electroless nickel chemicals for a low cost wafer bumping process”, Semicond. Sci. Technol., 17(2002), p911-917.
24. K.C. Hung and Y.C. Chan, “Study of Ni3P growth due to solder reaction assisted crystallization of electroless Ni-P metallization”, J. Mater. Sci. Lett., 19(2000), p.1755-1757.
25. Thaddeus B. Massalski (editor-in-chief), Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, Ohio, (1990).
26. K. Hüller, M. Sydow and G. Dietz, “Magnetic anisotropy, magnetostriction and intermediate range order in Co-P alloys”, J. Magn. Mater. 53 (1985), 269–274.
27. M. Paunovic, P.J. Bailey, R. G. Schad and D.A. Smith, “Electrochemically deposited diffusion barriers”, J. Electrochem. Soc., 142(1994), p.1843.
28. K. Hono, D.E. Laughlin, “Evidence of phosphorous segregation in grain boundaries in electroless-plated Co-P thin film”, J. Magn. Mater. 80 (1989), L137–141.
29. E.J. O’Sullivan, A.G. Schrott, M. Paunovic, C.J. Sambucetti, J.R. Marino, P.J. Bailey, S. Kaja and K.W. Semkow, “Electrolessly deposited diffusion barrier for microelectronics”, IBM J. Res. Develop., 42(1998), p.607.
30. Ichiro Koiwa, Masahiko Usuda and Tesuya Osaka, “Effect of heat-treatment on the structure and resistivity of electroless Ni-W-P alloy films”, J. Electrochem. Soc., 135(1988), p.1222-1228.
31. K. Aoki and O. Takano, “Corrosion Characteristics of Crystalline and Amorphous Electroless Nickel-Tungsten-Phosphorus Deposits”, Plat. Surf. Finishing, 73(1986), p.136-141.
32. Milan Paunovic and Mordechay Schlesinger, Fundamentals of electrochemical deposition, 2nd ed., Wiley, New York, (1998).
33. 莊萬發,無電解鍍金-化學鍍金技術,復漢出版社,(1996)。
34. 曾威綱,“無電鍍鈷合金薄膜對銅矽擴散阻障效能之研究”,逢甲大學,碩士論文,民國91年。
35. G.O. Mallory and J.B. Hajdu, Electroless plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, (1990).
36. Y. Sverdlov and Y. Shacham-Diamand, “Electroless deposition of Co(W) thin films”, Microelectronic Engineering, 70(2003), p.512-518.
37. N. Petrov, Y. Sverdlov and Y. Shacham-Diamand, “Electrochemical study of the electroless deposition of Co(P) and Co(W,P) alloy”, J. Electrochem. Soc., 149(2002), p.C187-C194.
38. E.J. Podlaha and D. Landolt, “Induced Codeposited III. Molybdenum Alloys with Nickel, Cobalt and Iron”, J. Electrochem. Soc., 144(1997), p.1672-1680.
39. K.M. Gorbunova (Ed.), Physico-chemical origins of the chemical reduction of cobalt, Science Publishing, Moscow, (1974).
40. P. Ratchev, R. Labie and E. Beyne, “Nanohardness study of CoSn2 intermetallic layers formed between Co UBM and Sn flip-chip solder joints”, Proceedings of 6th Electronic Packaging Technology Conference, (2004), p.339-342.
41. L. Magagnin, V. Sirtori, S. Seregni, A. Origo and P.L. Cavallotti, “Electroless Co-P for diffusion barrier in Pb-free soldering”, Electrochimica Acta, 50(2005), p.4621-4625.
42. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction ,3rd ed., Prentice Hall, New Jersey, (2001), p.182-183.
43. H.W. Simpson and D.R. Brambley, “The magnetic and structure properties of bulk amorphous and crystalline Co-P alloys”, Phys. Stat. Sol.(b), 43(1971), p.291.
44. M. Paunovic, T. Nguyen, R. Mukherjee, C. Sambucetti and L. Romankiw, “Empirical modeling and response surfaces for electroless Co deposition process”, J. Electrochem. Soc., 144(1995), p.1495.
45. H.S. Liu, J. Wang and Z.P. Jin, “Thermodynamic optimization of the Ni-Sn binary system”, Computer Coupling of Phase diagrams and Thermochemistry, 28(2004), p.363-370.
46. M. Jiang, J. Sato, I. Ohnuma, R. Kainuma and K. Ishida, “A thermodynamic assessment of the Co-Sn system”, Computer Coupling of Phase diagrams and Thermochemistry, 28(2004), p.213-220.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊