跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施惟凱
研究生(外文):Wei Kai Shih
論文名稱:氧化鋯含量對莫來石/氧化鋯複合材料之電性影響
論文名稱(外文):Ionic Conductivity and Association Energies from Analysis of Electronic Impedance of Mullite/Zirconia Composite
指導教授:林健正林健正引用關係
指導教授(外文):Chien-cheng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:氧化鋯莫來石電性交流阻抗儀
外文關鍵詞:mullitezirconiaionic conductivityimpedance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用將粉末分散後用熱壓法壓製出各種不同氧化鋯含量之mulite/zirconia陶瓷複合材料,利用AC Impedance量測在300℃~1300℃的離子導電率,在用XRD鑑定相別,SEM做微觀結構之觀察與利用Z-view軟體所Fitting出之等效電路做交互驗證已著實確定各等效電路之意義,並繪畫出各試片相對應等效電路之Arrhenius圖求其Q(活化能)值。研究結果顯示,mullite試片的活化能值約為0.63(eV)、MZY10與MZY20皆有轉折溫度約為700℃其低溫活化能值為0.57(eV)、0.68(eV),高溫活化能值為0.93(eV)、1.15(eV),MZY30 活化能值為0.98(eV),MZY40活化能值為0.85(eV)。將整體試片活化能值與各相對應等效電路活化能值作比較可推測出在各個不同的mullite/zirconia陶瓷複合材料在不同溫度下的可能離子移動路徑。再利用活化能值與Rzirconia/Rall分佈曲線推測出臨界體積分率為30%。
The effects of different zirconia content on ionic conductivity and microstructure in mullite/zirconia composite are studied using AC Impedance, SEM and XRD. The activity energy of mullite is about 0.63(eV) at 300oC~1300oC. The MZY10 and MZY20 have a gradual transition in a temperature about 700oC , however the temperature is smaller than 700oC, its activity energies are 0.57(eV)and 0.68(eV). When the temperature is above 700oC, its activity energies are 0.93(eV) and 1.15(eV). The activity energy of MZY30 is 0.98(eV). The activity energy of MZY40 is 0.82(eV). Compare the activity energies of samples with the activity energies of the related equal circuit, we could presume that the ionic transport way in samples. Using the diagram of Rzirconia/Rall vs. ZrO2 could predict the critical volume at 30 vol%~40 vol%
目錄
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 v
圖目錄 vii
第一章 前言 1
第二章 原理及文獻回顧 4
2-1 分散原理 4
2-2 PH值的調整 5
2-3 溶劑的選擇 5
2-4 擴散理論 5
2-5 Nernst-Einstein Relation 7
2-6 Arrhenius Diagram 11
2-7 Haven Ratio 12
2-8 Electrochemistry Impedance Spectroscopy 12
第三章 實驗步驟 14
3-1 粉體特性量測 14
3-2 熱壓試片的製備 15
3-3 試片的加工處理 16
3-4 密度之量測 16
3-5 x-ray繞射分析 17
3-6 SEM試片表面觀察 18
3-7 Impedance的量測 18
第4章 結果與討論 20
4-1 試片熱壓後結果 20
4-2 XRD分析結果 20
4-3 電子掃描顯微鏡分析(SEM) 21
4-4 AC Impedance分析 23
4-5 Nernst-Einstein方程式計算的結果 34
第5章 結論 35
REFERENCE
[1]. N.Claussen and J.Jahn, "Mechanical Properties of Sintered in Situ-Reacted Mullite-Zirconia Composites," J.Am.Ceram.Soc., 63 [3-4] 228-29 (1980).
[2]. P.F.Becher, C.H.Hsueh, P. Angelini, and T.N. Tiegs, "Toughening Behavior in Whisker-Reinforced Cermic Matrix Composites," J.Am.Ceram.Soc., 71 [12] 1050-61 (1988).
[3]. R. Ruh, K. S. Mazdiyasni, and M. G. Mendiratta, "Mechanical and Microstructural Characterization of Mullite and Mullite-Sic-Whisker and ZrO2-Toughened-Mullite-Sic-Whisker Composites," J.Am.Ceram.Soc., 71 [6] 503-12 (1988).
[4]. Prochazka, S. Wallance, J.S., and Claussen, "Microstructure of sintered mullite-zirconia composites," J.Am.Ceram.Soc., 66 125-27 (1983).
[5]. S.M. Lee, Internation encyclopedia of composites, 267-78. VCH Publishers, New York, 1990.
[6]. 傅承祖, 第24章, 2nd.; 中華民國粉末冶金學會, 臺灣, 1999.
[7]. C.C. LIn, A. Zangvil, and R. Ruh, "Modes ofOxidation in SiC-Reinforced Mullite/ZrO2 Based Composites:Oxidation vs.Depth Behavior," Acta Mater., 47 [6] 1977-86 (1999).
[8]. C.C. Lin, A. Zangvil, and R. Ruh, "Microscopic Mechanisms of Oxidation in SiC-Whisker-Reinforced Mullite/ZrO2 Matrix Composites," J.Am.Ceram.Soc., 82 [10] 2833-40 (1999).
[9]. C.C. Lin, A. Zangvil, and R. Ruh, "Phase Evolution in silicon Carbide-Whisker-Reinforced Mullite/Zirconia Composite during Long-Term Oxidation at 1000 oC to 1350oC," J.Am.Ceram.Soc., 83 [7] 1797-803 (2000).
[10]. Y.J. Lin and L.J. Chen, "Reaction Synthesis of Mullite-Silicon Carbide-Yttria-Stabilized Zirconia Composites," J.Mater.Res, 14 [10] 3949-56 (1999).
[11]. C.Y. Tsai, C.C. Lin, A.K. Li, and A. Zangvil, "Effect of Zirconia Content on the Oxidation Behavior of Silicon Carbide/Zirconia/Mullite Composites," J.Am.Ceram.Soc., 81 [9] 2413-20 (1998).
[12]. J.Homemy, W.L. Vaughn, and M.K.Ferber, "Processing and Mechanical Properties of SiC-Whisker-Al2O3-Matrix Composites," Am.Ceram.Soc.Bull., 66 [2] 333-38 (1987).
[13]. R.Lundberg, B.Nyberg, K. Williander, M. Persson, and R. Carlsson, "Processing of Whisker-Reinforced Ceramics," Composites(Guilford,U.K.), 18 [2] 125-27 (1987).
[14]. R.Porter, F.E. Lange, and A.H. Chokshi, "Proessing and Creep Performace of SiC-Whisker-Reinforced Al2O3," Am.Ceram.Soc.Bull., 66 [2] 343-47 (1987).
[15]. T.N.Tiegs and P.F.Becher, "Sintered-Al2O3-SiC-Whisker Composites," Am.Ceram.Soc.Bull., 66 [2] 339-42 (1987).
[16]. M.D. Sacks, Hae-Weon Lee, and O.E. Rojas, "Suspension Processing of Al2O3/SiC Whisker Composites," J.Am.Ceram.Soc., 71 [5] 370-79 (1988).
[17]. M.V. Parish, R.R. Garcia, and H.K. Bowen, "Dispersions of Oxide Powders in Organic Liquids," J.mater.Sci, 20 996-1008 (1985).
[18]. M.E. Glicksman, Diffusion in Solids, 2nd Ed.; Wiley, New York, 2000.
[19]. J.Crank, The Mathematics of Diffusion, 2nd Ed.; Oxford University Press, Oxford U.K., 1975.
[20]. M.W. Barsoum, Fundamentals of ceramics, McGraw Hill, New York, 1997.
[21]. KAZUHIRO SYLVESTER GOTO, Solid State Electrochemistry and its applications to sensors and electronic devices, Elsevier Science, NEW YORK, 1988.
[22]. Yoshihiro Hirata, Mitsunori Kawabata, and Yoshimi Ishihara, "Electrical properties of silica-alumina ceramics in nitrogen atmosphere," J.Mater.Res, 8 [5] 1116-21 (1991).
[23]. Sotomitsu Ikeda, Osamu Sakurai, Keizo Uematsu, Nobuyasu Mizutani, and Masanori Kato, "Electrical conductivity of yttria-stabilized zirconia single crystals," J.mater.Sci, 20 4593-600 (1985).
[24]. M.Filal, C. Petot, M. Mokchah, C. Chateau, and J.L. Carpentier, "Ionic conductivity of yttrium-doped zirconia and the "composite effect"," Solid state Ionics, 80 27-35 (1995).
[25]. M.I. Osendi and J.R. Jurado, AC Impedance Complex PLane Studies on Alumina-Zirconia and Mullite-Zirconia Composites, 239-48. Elsevier Applied Science, New York, 1989.
[26]. Eliana N. S.Muccillo and M.kleitz, "Ionic Conductivity of Fully Stabilized ZrO2:MgO and Blocking Effects," J.Euro.Ceram.soc., 15 51-55 (1995).
[27]. J.Ross Macdonald, Impedance spectroscopy, 2nd Ed.; Wiley, New York, 2005.
[28]. 邱國創, 電化學阻抗頻譜儀原理及在高寬頻陶瓷材料開發上的應用, 工研院, 臺灣, 2003.
[29]. Chiu Kuo-Chuang, "Impedance Spectroscopy modeling of 8mol% Y2O3-ZrO2 solid solution Oxygen sensor,"
[30]. M.kleitz and M.C.Steil, "Microstructure Blocking Effects Versus Effective Medium Theories in YSZ," J.Am.Ceram.Soc., 17 819-29 (1997).
[31]. S.Somiya and Y. Hirata, "Mullite Powder Technology and Applications in Japan," Ceramic Bulletin., 70 [10] 1624-32 (1991).
[32]. W.D.Kingery, H.K.Bowen, and D.R.Vhlmann, Introduction to ceramics, 2nd Ed.; John Wiley&Sons Inc., Singapore, 1975.
[33]. Masayuki Imose, Akihiro Ohta, Yoshihiko Takano, Masaru Yoshinaka, Ken Hirota, and Osamu Yamaguchi, "Low-temperture Sintering of Mullite/Yttria-Doped Zirconia Composites in the Mullite-Rich Region," J.Am.Ceram.Soc., 81 [4] 1050-52 (1998).
[34]. H.Schneider, K.Okada, and J. Pask, Mullite and Mullite Ceramics, WILEY, New York,
[35]. A.R.West, D.C.Sinclair, and Naohiro Hirose, "Characterization of Electrical Material,Especially Ferroelectrics,by Impedance Spectroscopy," Journal of Electroceramics, 1 [1] 65-71 (1997).
[36]. 史美倫, 交流阻抗頻譜原理及應用, 國防工業出版社, 中國北京, 2001.
[37]. Hiroshi.Yamamura, Noriaki Utsunomiya, Toshiyuki Mori, and Tooru Atake, "Electrical conductivity in the system ZrO2-Y2O3-Sc2O3," Solid state Ionics, 107 185-89 (1998).
[38]. J.M.Bae, H.Fox, J.A.Kilner, and B.C.H.Steele, British Ceramic Proceedings Ceramic Oxygen Ion Conductorsand their Technical Applications, Institute of Materials, London,UK, 1996.
[39]. Turgut M.GUR, Ian D.RAISTRICK, and Robert A.HUGGINS, "AC ADMITTANCE MEASUREMENT ON STABILIZED ZIRCONIA WITH POROUS PLATINUM ELECTRODES," Solid state Ionics, 1 251-71 (1980).
[40]. Wei Lai and Sossina M. Hailew, "Impedance Spectroscopy as a Tool for Chemical and Electrochemical
Analysis of Mixed Conductors: A Case Study of Ceria," J.Am.Ceram.Soc., 88 [11] 2979-97 (2005).
[41]. Evgenij Barsoukov and J.Ross Macdonald, Impedance Spectroscopy Theory,Experiment,andApplications, 2nd Ed.; John Wiley&Sons, New Jersey, 2005.
[42]. Xin Guo and Zaoli Zhang, "Grain size dependent grain boundary defect structure:case of doped zirconia," Acta Mater., 51 2539-47 (2003).
[43]. Verkerk MJ, Middelhuis BJ, and Burggraaf AJ, Solid state Ionics, 6 [159] (1982).
[44]. Xin Guo and Yong Ding, "Grain boundary space charge effect in zirconia experimental evidence " Journal of Electrochemical Society, 151 [1] j1-j7 (2004).
[45]. J.A.Kilner and C.D.Waters, "THe effects of Dopant Cation-Oxygen Vacancy Complexes On THe Anion Transport Properties Of Non-Stoichiometric Fluorite Oxides," Solid state Ionics, 6 253-59 (1982).
[46]. Guang-Yao MENG and Robert A.HUGGINS, "THE OXYGEN ION CONDUCTIVITY OF MULLITE PREPARED USING A WET CHEMICAL PROCESS," Solid state Ionics, 11 271-78 (1984).
[47]. P.K.Davies and R.S.Roh, chemistry of Electrionic Ceramic Materials Gaithersburg MD'Technomic, Japan, 1990.
[48]. Byung-kook kim, Soon Ja Park, and hiro-o Hamaguchi, "Raman Spectrometric Determination of the Oxygen Self-Diffusion Coefficients in Oxides," J.Am.Ceram.Soc., 10 2648-52 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊