跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲誠
研究生(外文):Che-Cheng Chang
論文名稱:覆晶封裝銲錫技術中熱時效對電遷移效應的影響
論文名稱(外文):Effect of Aging on Electromigration of Flip-Chip Solder Joints
指導教授:陳智陳智引用關係
指導教授(外文):Chen Chih
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:72
中文關鍵詞:電遷移覆晶封裝熱時效金屬層介金屬化合物電流集中效應
外文關鍵詞:electromigrationflip-chipagingUBMIMCcurrent crowding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:563
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子元件越做越小,每個銲錫球所需承受的電流密度就越大,因此研究如何讓銲錫球可以抵抗電遷移效應是非常重要的課題。由於在迴銲的時候,Under Bump Metallurgy (UBM)層通常是Ni或是Cu,並且會和Sn產生介金屬化合物(IMC),這一層介金屬化合物,不但是銲接上去作為接合用的介面,更由於它是高電阻的物質,我們推測可以藉由此性質降低電流集中效應,增加銲錫球的使用壽命。因此我們使用熱時效的方式,增加IMC的厚度,使用的溫度約為銲錫溶點絕對溫度的百分之九十。我們使用薄膜UBM與厚膜UBM兩種試片。薄膜試片的結構是矽晶片上UBM層為Ti 0.1 micro-m /Cr-Cu 0.3 micro-m/Cu 0.7 micro-m 薄膜,在基板上的金屬層為Au 0.025 micro-m / Ni(P) 5 micro-m/Cu 20 micro-m,銲錫球為Sn63Pb37共晶銲錫結構由於溶點為183℃,所以我們使用的熱時效溫度是150℃﹔而厚膜試片結構是UBM層為Ti 0.5 micro-m/Cu 0.5 micro-m /Cu 5 micro-m /Ni 3 micro-m,而使用在板上的金屬層為Au 1 micro-m /electroless Ni 5 micro-m,銲錫球為Sn80Pb20的成分,溶點為208℃。所以使用的熱時效溫度為170℃。我們發現在薄膜試片中熱時效會降低銲錫球在電遷移測試當中的life time,而在厚膜試片當中,適度的熱時效則會增加銲錫球的life time,沒有熱時效的平均壞掉時間是430hr,而在熱時效25hr的時候壞掉時間可以達到858hr。我們推測薄膜試片由於熱時效在界面反應後容易造成孔洞,會使銲錫球降低電遷移測試的life time;而厚膜試片則會產生較厚且穩定介面的IMC在UBM與銲錫球中間,減緩因為電流集中效應產生的空孔,增加銲錫球抗電遷移能力。我們使用紅外線觀察試片在電遷移測試後的損壞的情況觀察是否是真的壞在銲錫球上面而不是鋁導線。我們發現不同的破壞機制在有熱時效與沒有熱時效在試片整個損壞前,由於厚膜試片有著Kelvin probes結構,所以我們可以使用四點量測去測量試片中因為電遷移孔洞造成銲錫球電阻增加情形,觀察其中的破壞機制,我們發現熱時效過後的試片,在電遷移測試中容易產生IMC橋連接晶片端與基版端使電子通過,可能也是增加試片life time的重要因素之一。
Due to the trend of miniaturization and the high performance, the dimension of solder bumps keeps decreasing and the current that each bump needs to carry keeps increasing, causing the current density in the solder bump to increase dramatically. As a result of the high current density, minimization of electromigration effect becomes the key to achieve high reliability. In flip chip technology, UBM (Under Bump Metallurgy) is often used to connect chip, solder and board. UBM is mostly composed of Ni or Cu which reacts with Sn to form IMC (Intermetallic compound). IMC is usually composed of Ni3Sn4 or Cu6Sn5 and is used to joint chip and solder. We conjecture IMC can reduce current crowding effect during electromigration test because of its higher resistivity than solder. For the reasons above, our goal is to make the IMC layer as smoothly as possible in order to achieve a longer life time for solder. In our experiment, two types of samples are used; both are aged at 90% of its melting point. One of the samples is thin-film UBM bump. Its structure is Ti 0.1 micro-m /Cr- Cu 0.3 micro-m/Cu 0.7 micro-m/Sn63Pb37/Au0.025micro-m / Ni(P) 5 micro-m/ Cu20 micro-m. Because solder ball is eutectic SnPb, its melting point is 183℃. We used 150℃ to age it. The other was thick -film bump, its structure was Ti 0.5 micro-m /Cu 0.5 micro-m/Cu5�慆icro-m /Ni3 micro-m/Sn80Pb20 /Au 1 micro-m/ electroless Ni 5 micro-m. Sn80Ni20 its melting point is 208℃. We used 170℃ to age it. At the end of the experiment, we found aging effect reduces solder ball life time under 0.28A and 150℃ during electromigration test in thin film structure. On the other hand, we observed an opposite result for thick-film bump structure. We speculated that voids form between UBM and solder in thin-film under thermal aging. However, complete and successive IMC formed in thick-film UBM. We used infrared ray to exam the sample failure in the Al trace or solder bump after electromigration test. Because thick-film UBM has Kelvin probes structure, we also used 4-point probe to measure bump resistance in thick-film bump. Before bump open, we found different failure mechanisms between aging-free and aging solder joint. Sample which age may form IMC bridge between chip and board
during electromigration test. It may be an important reason to prolong the sample life
time.
Abstract in Chinese Ⅰ
Abstract in English Ⅱ
Contents Ⅲ
List of Tables Ⅴ
List of Figures Ⅵ
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2-1 Overview of electronic packaging 4
2-2 Chip level connections 5
2.3 Under Bump Metallization (UBM) 7
2.4 Electromigration theory 8
2.5 Mean-time-to-failure (MTTF) 10
2.6 The electromigration behavior in solders 11
2.7 The melting phenomenon in solder bumps 13
2.8 Current crowding effect 14
2.9 Motivation of this steady IMC character 15
Chapter 3 Experiment 27
3.1 Thin-film UBM sample structure 27
3.2 Aging and electromigration test for thin-film bump 28
3.3 Thick-film UBM sample structure 28
3.4 Aging and electromigration test for thick-film UBM sample 29
3.5 Four-point probe and bump resistance 30
3.6 Analysis 30
Chapter 4 Results and Discussion 41
4.1 Thin-film UBM bump life time with thermal aging 41
4.2 Thick-film UBM solder composition and structure made by aging 42
4.3 Thick-film UBM life time with thermal aging 43
4.4 Thick-film UBM solder bump resistance with aging time 44
4.5 Thick-film UBM solder before open 45
Chapter 5 Conclusions 70
References 71
[1]R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, M13icroelectronics Packaging Handbook (Chapman and Hall, New York, 1997).
[2] C. S. Chang, A. Oscilowski, and R. C. Bracken, IEEE Circuits Devices Mag. 14, 45 (1998).
[3]The International Technology Roadmap for Semiconductor, Semiconductor Industry Association, 2003.
[4] Donald P. Seraphim, Ronald C. Lasky, and Che-Yu Li. Principles of electronic
packaging. McGraw-Hill, (1989).
[5] John H. Lau. Flip chip technology. McGraw-Hill, (1995).
[6] B. Imler, K. Scholz, M. Cobarruviaz, R. Haitz, V. K. Nagesh, and C. Chao. ECTC aproc., 508, (1992).
[7] International technology roadmap for semiconductors. Semiconductor Industry
Association, http://public.itrs.net (2001).
[8] K. N. Tu and K. Zeng, Materials Science and Engineering Reports, R34, 1-58 (2001).
[9] C. Y. Liu, Chih Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett., 75, 58 (1999).
[10]K. Zeng and K. N. Tu, Materials Science and Engineering Reports, R38, pp. 55-105 (2002).
[11]D. Suraski, K. Seelig, IEEE Transactions on Electronics Packaging Manufacturing, Volume: 24, 4, p. 244 (2001).
[12]D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang: Pb-Free Solders for Flip-Chip
[13] H. B. Huntigton and A. R. Grone, J, Phys. Chem. Solids., 20, 76 (1961).
[14] I. A. Blech, Acta Mater., 46(11), 3717(1998)
[15] P. F. Tang, John Wiley and Sons, N. Y., 64 (1993).
[16] C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., 88, 5703 (2000).
[17]K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists, Pearson Education POD 355, (1996).
[18]T.Y.Lee,K.N.Tu, and D.R.Frear,J.Appl.Phys.,90,4502(2001)
[19] Y. C. Hu, Y. H. Lin, and C. R. Kao, J. Mater. Res., 18, 2544, (2003).
[20] M.O.Alam, B.Y.Wu, Y.C.Chan, K.N.Tu. Acta Materialia, 54(2006)613-621
[21] Judith Glazer, “Microstructure and Mechanical Properties of Pb free Solder Alloys for Low-Cost Electronic Assembly: A Review,” J. Electronic Materials 23(8), 693 (1994)
[22]E.A. Brandes, Smithells Metals Reference Book, 6th ed., p. 16-2 (Butterworths, London, 1983)
[23]D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., The Mechanics of Solder Alloy Interconnects, p. 60 (Van Nostrand Reinhold, New York, 1994)
[24] Chen CM, Chen SW. J. Electron Mater. 1999;27:902–6.
[25] Chen SW, Chen CM, Liu W-C. J. Electron Mater. 1998;27:1193–8.
[26] Du MY, Chen CM, Chen SW. Mater. Chem. Phys. 2003;82:818–25.
[27] Chen SW, Chen CM. JOM-J Min Met. Mater. Soc 2003;55:62–7.
[28] Chen CM, Chen SW. Acta. Mater. 2002;50:2461–9.
[29] Chen CM, Chen SW. J Appl. Phys. 2001;90:1208–14.
[30] Chen CM, Chen SW. J Electronic Mater. 2000;29:1222–8.
[31] Chen CM, Chen SW. J Mater. Res. 2003;18:1293–6.
[32] H. L. Chao, S. H. Chae, X. F. Zhang, K. H. Lu, J. Im, and P. S. Ho, in International Reliability Physics Symposium, IRPS Proceedings (2006)
[33] Min Ding,a_ Guotao Wang, Brook Chao, and Paul S. Ho,Peng Su and Trent Uehling, J Appl.Phys.2006;99:094906
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 籃志弘,2004,〈各縣市推動業務委託民間辦理概況與分析〉,《人事月刊》,第39卷第2期,第228期,頁42。
2. 籃志弘,2003,〈推動地方政府業務委託民間辦理活化公務人力運用〉,《人事月刊》,第37卷第2期,第216期,頁59-60。
3. 蔡允棟,2001,〈新治理與治理工具的選擇:政策設計與層次分析〉,《中國行政評論》,第11卷第2期,頁48-49。
4. 黃國鐘,2003,〈政府再造與組織重整〉,《國家政策論壇季刊》,夏季號,頁21-38。
5. 歐育誠,2004,〈政府業務委託民間辦理之理論與實務〉,《研習論壇》,第40期,頁5-12 。
6. 游育蓁,1999,〈和外包商建立互惠的合作關係〉,《管理雜誌》,第298期,頁15-18 。
7. 曾明遜,1994,〈檢視我國現階段土地使用管制措施之公平性〉,《人與地月刊》,第122期,頁20-26。
8. 陳明燦,1998,〈論我國落實國土計畫之行政組織〉,《人與地月刊》,第171期,頁19-39。
9. 郭年雄,1998,〈政府再造--國土規劃、開發與管制一元化〉,《人與地月刊》,第171期,頁31-39。
10. 張石角,1999,〈當前國土規劃問題〉,《政策月刊》,第53期,頁22。
11. 翁興利、陳愛娥、陳永愉,2002,〈推動公共服務委外之現況與展望〉,《研考雙月刊》,第26卷第3期,頁74-76。
12. 翁興利,1998,〈政府法制與政府再造之研究〉,《國策專刊》,第4期,頁3-5。
13. 范祥偉,2002,〈政府業務委託民間辦理之理論與政策〉,《人事月刊》,第34卷第5期,第201期,頁55-56。
14. 范祥偉,2000,〈委託外包的理論與實務之探討〉,《人事月刊》,第32卷第5期,第189期,頁52》。
15. 施能傑,2001,〈政府改造的理念與應用〉,《人事月刊》,第33卷第3期,第193期,頁23-29。