跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/02/25 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅子豪
研究生(外文):Zi Hau Fu
論文名稱:微電子65奈米世代後銅薄膜阻抗係數之探討
論文名稱(外文):The study of copper thin film resistivity for applications beyond 65nm technology node
指導教授:呂志鵬呂志鵬引用關係
指導教授(外文):Jihperng (Jim) Leu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:阻抗係數銅薄膜表面散射晶界散射
外文關鍵詞:ResistivityCopper thin filmsSurface scatteringGrain boundary scattering
相關次數:
  • 被引用被引用:4
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
當電子元件繼續隨著Moore定律從0.25 um世代縮小至65 nm世代時, 銅導線的阻抗係數呈非線性增加,如此對RC (電阻x電容)延遲有負面影響。基本上銅阻抗係數增高可能經由下列數種不同的散射機制 : (1) 表面散射:由銅界面上表面粗糙度與蝕刻造成的粗糙度引起,(2)晶粒大小改變引起的間界散射, (3)缺陷與雜質散射。本論文研究乃利用平面式薄膜疊層來探討各散射的貢獻,其第一目的是探討晶粒大小造成的晶界散射,對阻抗係數上升所造成的影響,第二目的是在固定晶粒大小的情況下來研究表面散射所造成的影響,實驗已成功驗證在線寬90 nm時晶界散射乃是造成阻抗係數上升的主要原因,但是在線寬縮小到60 nm後,表面散射的比例也逐漸爬升。
As device continues scaling down to 65 nm node, the copper line resistance is seen to rise non-linearly, which has negative impact on RC delay. Fundamentally, several parameters may contribute to the copper resistivity increase through different scattering mechanisms such as (1) surface scattering arisen from surface roughness (2) grain boundary scattering by smaller grain size, and (3) defect and impurity scattering. Our research efforts have focused on blanket film stack to understand the scattering contributions. The objective of this study is to quantify the impacts of grain size for grain boundary scattering. The other objective of this study is to quantify the impact of surface scattering by keeping the grain size the same in various film thicknesses. Grain boundary play important role in resistivity increase for thickness between 200 nm and 90 nm, while surface scattering effect become more important for thickness below 60 nm node and below.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 9
第二章 文獻回顧 11
2.1 半導體產業的演進 11
2.2 介電材料 15
2.2.1 介電材料之定義 15
2.2.2 低介電材料之需求 16
2.3 金屬化製程 18
2.3.1 金屬導線之演變 18
2.3.2 銅金屬沉積的方式 19
銅金屬沉積的方式主要有 : 19
2.3.3 銅導線引進之衝擊 20
2.4 銅導線之物理極限 24
2.4.1 Mean free path 25
2.4.2 Temperature coefficient of the resistivity (TCR) 27
2.4.3 Matthiessen’s Rule 29
2.4.4 Electron- surface and sidewalls scattering 30
2.4.5 Grain boundary scattering 32
2.4.6 Impurities scattering 34
2.5 量測技術介紹 35
2.6 研究動機 37
第三章 實驗方法與步驟 40
3.1 實驗構想與流程大綱 40
3.1.1 實驗構想 40
3.1.2 實驗流程大綱 41
3.2 各組試片配製方法 42
3.2.1 總散射機制之配製方法 42
3.2.2 晶界散射機制之試片配製方法 43
3.3 實驗儀器原理介紹 45
3.3.1 電子顯微鏡( electron microscope , EM ) 45
3.3.2 四點探針 (Four point probe ; FFP) 47
3.3.3 展阻量測系統(Spreading Resistance Probe;SRP) 49
3.3.4 聚焦離子束(Focus Ion Beam;FIB) 51
第四章 結果與討論 53
4.1 材料性質分析與量測 53
4.1.1 四點探針量測 53
4.1.2 TEM與SEM測量 53
4.1.3 FIB測量 56
4.2 實驗數據討論與分析 57
4.2.1 晶粒分布與數據分析 57
4.2.2 總散射機制之阻抗係數與厚度關係 59
4.2.3 表面散射試片之阻抗係數與厚度關係 64
4.2.4 散射機構對阻抗係數的影響 71
4.2.5 展阻量測系統之應用 72
第五章 結論與未來展望 75
參考文獻 78
[1] Peter Van Zant, Microchip fabrication : a practical guide to semiconductor processing, 4th ed, McGraw-Hill, New York, 2001
[2] Carter W. et al., IEEE VMIC Conference, p.144, 1991
[3] International Technology Roadmap for Semiconductors, Executive Summary, 2005
[4] R. Singh et al., The Electrohemical Society Interface, p.26, 1999.
[5] Mark T. Bohr, International Electronic Device Meeting, p.241, 1995.
[6] R. J. Gutmann, IEEE Transactions on Microwave Theory and Techniques, p.667, 1999.
[7] R. J. Gutmann, IEEE RAWCON Proceeding, p.285, 1998
[8] J. Leu, Low-k Materials and Processing Thchnologies Class, Lecture 2 , 2005
[9] International Technology Roadmap for Semiconductors, Interconnect, 2005
[10] M.-A. Nicolet., Thin Solid Films, 52, p.415, 1978
[11] J. F. Shackelford, Materials Science for Engineers, MacMillan, New York, p.508, 1988
[12] Jiang Tao et al., IEEE Electron Device Letters, p.554, 1993
[13] S. P. Murarka et al., Thin Solid Films, 236, p.257, 1993
[14] P. Singer, Semiconductor International, p.91, 1998.
[15] S. Q. Wabg, Materials Research Bulletin, p.30, 1994.
[16] J. Kim et al., Journal of Electronic Materials, 28, p.6, 1999
[17] R. Hoogeveen et al., Thin Solid Films, 275, p.203, 1996.
[18] D. Edelstein et al., IEEE, International Electronic Device Meeting, p.773, 1997
[19] H. Ono et al., Applied Physics Letters, 64, p.1511, 1994
[20] J. O. Olowolafe, Journal of Applied. Physic, 72, p.4099 , 1992
[21] C. S. Liu et al., Journal of Applied Physic, 74, p.5501, 1993
[22] Momtchil Stavrev, Journal of Vacuum Science & Technology A.,
17, p.993, 1999
[23] S. M. Rossnagel, Journal of Vacuum Science & Technology B., 20, p.2328, 2002
[24] K. HIEBER, Thin Solid Films, 24, p.157, 1974
[25] S.W. Russell et al., Thin Solid Films, 262, p.154, 1995
[26] Kee-Won Kwon et al., Applied Physic Letters, 71, p.3069, 1997
[27] W. Wu et al., Applied Physic Letters, 84, p.2838, 2004
[28] J.Vancea, G. Reiss, and H. Hoffmann, Physical; Review B, 35, p.6435, 1987
[29] Ron Powell, IITC Sematech Workshop, 2005
[30] De Vries, Thin Solid Films., 167, p.25, 1988
[31] K. Fuchs, Proc. Cambridge Phil. Soc., 34, p100, 1938.
[32] T. S. Kuan et al., Mater. Materials Research Society, D7.1.1, 2000
[33] AF. Mayadas et al., Physical Review B, 1, p.1382, 1970
[34] T. Clarysse et al., Journal of Vacuum Science & Technology B., 22, p.444, 2004
[35] T.S. Kuan, SRC report and private communication, 2003
[36] J. Sudijono, IEDM short course, p.15, 2004
[37] Valenzuela C. G., TMS-AIME, p.1911, 1965
[38] Remy L., Acta Met., p.443 , 1978
[39] Dean Denning, IITC Sematech Workshop, 2005
[40] T. Clarysse et al., Journal of Vacuum Science & Technology B., 20, p.459, 2002
[41] T. Clarysse et al., Applied Physics Letters, 80, p.2407, 2002
[42] S. M. Hu, Journal of Applied Physics, 53, p.1499, 1981
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文