跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/05 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡呈偉
論文名稱:以考慮跳躍的信用市場模型定價信用衍生性商品
論文名稱(外文):The Pricing of Single-name Credit Derivatives by the Credit Market Model with Jumps
指導教授:王克陸王克陸引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:30
中文關鍵詞:信用市場模型跳躍擴散信用違約交換標點過程違約機率隱含波動度
外文關鍵詞:credit market modeljump-diffusionCDSmarked point processdefault probabilityimplied volatility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:1
本文以一個考慮跳躍的信用市場模型定價信用違約交換(credit default swaps)與信用違約交換選擇權(credit default swaptions)。本文提出一個跳躍擴散模型,將信用違約交換的價差當作主要變數來計算信用違約交換選擇權的價格,其中跳躍的部份是以標點過程(marked point processes)以及複合波式過程(compound Poisson processes)來描述。藉著對跳躍部份的特別設定我們能夠推導出解析的定價公式。我們也提出兩個數值的實例來顯示本模型的彈性:第一個是違約機率的計算,第二個是信用違約交換選擇權的隱含波動度曲線之重製。
This paper describes the pricing of credit default swaps (CDS) and credit default swaptions using market model with jumps. We propose a jump-diffusion credit market model that treats the CDS spread as the major variable to value a credit default swaption, in which the jumps are modeled by the marked point processes (MPPs) as well as the compound Poisson processes. Analytic pricing formula exists under some appropriate specification on the jump part of the CDS spread dynamics. We also make two numerical illustrations to show the flexibility of this model: The first one is the calculation of default probability and the second one is the reproducing of implied volatility curve for credit default swaptions.
Content
1. Introduction 1
2. Model Settings and Review of Credit Market Model 3
2.1 Notations: 3
2.2 Some Important Relationships: 4
2.3: A Brownian-motion-based Credit Market Model 5
3. An Extension to Jump-diffusion Process 5
3.1 Model Pre-settings: Jumps in Two Forward Rates 5
3.2 Modeling with the Marked Point Processes 7
3.3: Constructing jump processes from MPPs 9
3.4: Modeling with the Compound Poisson Processes 10
4. Pricing Credit Default Swaps and Swaptions 11
4.1 Credit Default Swaps 11
4.2: Pricing Credit Default Swaptions 13
5. Numerical Illustrations 18
5.1 Default Probability and Survival Curve 18
5.2 Implied Volatilities of Credit Default Swaptions 22
6. Conclusion 24
References 26
Appendix A – Change of measure with the inclusion of jumps 28
Appendix B – Derivation of the swaption price 29
Andersen, L., and J. Andreasen, 2000, “Volatility Skews and Extensions of the LIBOR Market Model”, Applied Mathematical Finance 7, 1-32.
Bennani, N., and D. Dahan 2004, “An Extended Market Model for Credit Derivatives”, Stochastic Finance 2004 Autumn School & International Conference.
Bjork, T., Y. Kabanov, and W.Runggaldier, 1997, “Bond Market Structure in the presence of Marked Point Processes”, Mathematical Finance 7, 211-239.
Brace, A., D. Gatarek, and M. Musiela, 1997, “The Market Model of Interest Rate Dynamics”, Mathematical Finance 7, 127-155.
Brigo, D., 2001, “Constant Maturity Credit Default Swap Pricing with Market Models”, Social Science Research Network.
Brigo, D., and L. Cousot, 2004, “A Comparison between the stochastic intensity SSRD Model and the Market Model for CDS Options Pricing”, The third Bachelier Conference, Chicago.
Brigo, D., and A. Alfonsi, 2005, “Credit Default Swaps Calibration and Option Pricing with the SSRD Stochastic Intensity and Interest-Rate Model”, Finance Stochastics IX (1).
Cont, R., and P. Tankov, 2004, Financial Modelling with Jump Processes (Chapman&Hall/CRC).
Das, S.R., and R. K. Sundarum, 1999, “The Surprise Element: Jumps in Interest Rate Diffusion”, Journal of Financial Quantitative Analysis 34, 211-240.
Glasserman, P., and N. Merener, 2003, “Cap and Swaption Approximations in LIBOR Market Models with Jumps”, Journal of Computational Finance 7, No. 1.
Glasserman, P., and S.G. Kou., 2003, “The Term Structure of Simple Forward Rates With Jump Risk”, Mathematical Finance 13, No. 13, 383-410.
Hull, J., M. Predescu, and A. White, 2003, “The Relationship Between Credit Default Swap Spreads, Bond Yields, And Credit Rating Announcement”.
Jamshidian, F., 1997, “Libor and Swap Market Models and Measures”, Finance Stochastics 1, 293–330.
Jamshidian, F., 2004, “Valuation of Credit Default Swaps and Swaptions”, Finance Stochastics 8, 343–371.
Jarrow, R.A., and S.M. Turnbull, “Pricing Derivatives on Financial Securities Subject to Credit Risk”, Journal of Finance L, 1, 53-85.
Merton R.C., 1976, “Option Pricing When Underlying Asset Returns Are Discontinuous”, Journal of Financial Economics 3.
Kou, S.G., 2002, “A Jump Diffusion Model for Option Pricing”, Management Science 48, 1086-1101.
Sch?nbucher, P.J., 2000, “A Libor Market Model with Default Risk”, Working Paper, Bonn University.
Shreve, S.E., 2004, Stochastic Calculus for Finance II: Continuous-Time Models (Springer).
Wu, L., 2005, “To Recover Or Not To Recover: That Is Not The Question”, Financial Mathematics Seminar at HKUST.
Zhou, C., 1997, “A Jump-Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities”.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊