跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮耀文
研究生(外文):Yao-Wain Feng
論文名稱:對第一階段非線性剖面資料製程監控
論文名稱(外文):A New Robust Method Phase I Analysis for Monitoring of Nonlinear Profiles
指導教授:洪志真洪志真引用關係
指導教授(外文):Jyh-JenHorng Shiau
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:第一階段非線性剖面資料穩健方法
外文關鍵詞:nonlinear profilesPhase I analysisFalse Discovery RateMinimum Covariance Determinant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
在很多實際情形, 製程或產品品質可以透過反應變數與一個以上解釋變數兩者間的關係來表現更為合適,而所蒐集的樣本資料點形成曲線形式,稱為剖面資料。本篇論文探討監控第一階段非線性剖面資料的管制圖方法。
我們對第一階段剖面資料建立非線性迴歸模型,且為了改善偵測離群點的能力,提出利用Minimum Covariance Determinant (MCD) 穩健估計量及結合近年來生物統計界盛行的False Discovery Rate (FDR)方法來改良 管制圖。
我們以大量模擬方法得到這兩種不同方法的製程偵測力,且將所提出的方法應用在Kang and Albin (2000)的人工蔗糖例子。結果顯示我們所提出的新方法表現得相當良好,且也給了一些針對製程的各種偏移情形應使用何種方法做監控的建議。相信未來許多產品考量的變數會越趨複雜,所以曲線型產品特性之評估也將受到重視,而我們所提出的管制方法相信在對於相關產品上的監控可以達到一定的效果。
In this paper, we propose a control chart for process monitoring when the quality of a product is characterized by a nonlinear function (or profile). In the Phase I analysis of historical data, in order to improve the ability of detecting multiple outliers, we propose using a Hotelling chart based on Minimum Covariance Determinant (MCD) estimators, which are robust estimators of multivariate location and scale, in conjugation with the False Discovery Rate (FDR), which is a relatively new statistical procedure that bounds the number of mistakes made when performing multiple hypothesis tests. We apply the proposed method to a nonlinear profile example presented in Kang and Albin (2000). Simulation studies show that our methods are effective in detecting any reasonable number of outliers.
1 Introduction 1
2 Literature Review 4
2.1 Linear Profile. . . . . . . . . . . . . . . . . . . . . . 4
2.2 Nonlinear Profiles . . . . . . . . . . . . . . . . . . . . 6
2.3 Robust Estimation in Multivariate Control Chart . . . . . . . . . . . . . .. . . . . .. . . 9
3 Modeling Nonlinear Pro‾les 13
3.1
Nonlinear Regression Model . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Constructing the T2
mcd Statistic . . .. . . . . . . . . . . . . . . . . . 16
3.3 Aspartame Example . . .. . . . . . . . . . . . . . . . . . . . . 17
4 Methodologies 18
4.1 The T2 mcd Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 The FDR Procedure. . . . . .. . . . . . . . . . . . . . . . . . 20
5 Monitoring Schemes 23
5.1 Control Limit . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Data Generation .. . . . . . . . . . . . . . . . . . . . . . 25
5.3 P-value of the Sample . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 The Signal Probability . . . .. . . . . . . . . . . . . . . . . . . 26
5.5 False-Rejection Rate and Correct-Rejection Rate . . . . . . . . . . . . . . . . 26
5.6 Results . . . . . . . . . . . . . . . . . . . . 27
6 Pro‾le Monitoring { Aspartame Example 29
6.1 A Simulation Study . . . . . . . . . . . . . . . . . . . . . 29
6.2 Results . . . . . . . . . . . . . . . . . . . . . . 30
7 Conclusions 31
[1] Atkinson, A. C. and Mulira, H. M. (1993). \The Stalactite Plot for the Detection of
Multivariate Outliers". Statistics and Computing, 3, 27-35.
[2] Benjamini, Y. and Hochberg, Y. (1995). \Controlling the False Discovert Rate: a Prac-
tical and Powerful Approach to Multiple Testing ". Journal of the Royal Statistical
Society: Series B, 57, 289-300.
[3] Brill, R. V. (2001). \A Case Study for Control Charting a Product Quality Measure That
is a Continuous Function Over Time". Presentation at the 45th Annual Fall Technical
Conference, Toronto, Ontario.
[4] Butler, R. W., Davies, P. L., and Jhun, M. (1993). \Asymptotics for the Minimum
Covariance Determinant Estimator". The Annals of Statistics, 21, 1385-1400.
[5] Croux C. and Haesbreck G. (1999). \In°uence Function and E±ciency of the Minimum
Covariance Determinant Scatter Matrix Estimator". Journal of Multivariate Analysis,
21, 161-190.
[6] Davis, P. L. (1992). \The Asymptotic of Rousseeuw's Minimun Volume Ellipsoid Esti-
mator". The Annals of Statistic, 20, 1828-1843.
[7] Ding, Y., Zeng, L., and Zhou, S. Y. (2006). \Phase I Analysis for Monitoring Nonlinear
Pro‾les in Manufacturing Processes". To appear in Journal of Quality Technology.
[8] Gallant, A. R (1987). Nonlinear Statistical Models. New York: Wiley.
[9] Hardin, J. and Rocke, D. (2005).\The Distribution of Robust Distances". Journal of
Computational and Graphical Statistics, 14, 928-946.
[10] Hawkins, D. M. (1994). \A Feasible Solution Algorithm for the Minimum Covariance
Determinant Estimator in Multivariate Data". Computational Statistic and Data Anal-
ysis, 8, 95-107.
[11] Hawkins, D. M. and Merriam, D. F. (1974). \Zonation of Multivariate Sequences of
Digitized Geologic Data". Mathematical Geology, 6, 263-269.
[12] Holmes, D. S. and Mergen, A. E. (1993). \Improving the Performance of the T2 Control
Chart." Quality Engineering, 5, 619-625
[13] Jesen, W. A., Birch, J. B., and Woodall. W. H. (2005). \High Breakdown Estimation
Methods for Phase I Multivariate Control Charts". Submitted to Journal of Quality
Technology.
[14] Jensen, W. A., Birch, J. B., and Woodall W. H. (2006). \Pro‾le Monitoring via Linear
Mixed Models". Submitted to Journal of Quality Technology.
[15] Jensen, W. A. and Birch, J. B. (2006). \Pro‾le Monitoring via Nonlinear Mixed Models".
Technical Report No. 06-4, Department of Statistics, Virginia Polytechnic Institute and
State University.
[16] Kang, L. and Albin, S. L. (2000). \On-Line Monitoring When the Process Yields a
Linear Pro‾le". Journal of quality Technology 32, 418-426.
[17] Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). \On The Monitoring of Linear
Pro‾les". To appear in Journal of Quality Technology.
[18] Lawless, J. F., MacKay, R. J., and Robinson, J. A. (1999). \Analysis of Variation
Transmission in Manufacturing Processes|Part I". Journal of Quality Technology, 31,
131-142.
[19] Mahmoud M. A. and Woodall, W. H. (2004). \Phase I Analysis of Linear Pro‾les With
Calibration Applications". Technometrics, 46, 380-391.
[20] Mason, R. L. and Young, J. (2002). Multivariate Statistical Process Control with Indus-
trial Applications. Philadelphia: SIAM.
[21] Mestek, O., Pavlik, J., and Suchanek, M. (1994). \Multivariate Control Charts: Control
Charts for Calibration Curves". Fresenius Journal of Analytical Chemistry, 350, 344-
351.
[22] Myers, R. H. (1990). Classical and Modern Regression With Applications (2nd). Belmont,
California: Duxbury Press.
[23] Rocke, D. M. and Woodru®, D. L. (1996). "Identi‾cation of Outliers in Multivariate
Data." Journal of the American Statistical Association, 91, 1047-1061.
[24] Rousseeuw, P. J. (1984). \Least Median of Squares Regression". Jornal of the American
Statistical Association, 79, 871-880.
[25] Rousseeuw, P. J., Aelst, Van Deiessen, K., and Agullo (2004). \Robust Multivariate
Regression". Technometrics, 46, 212-223.
[26] Rousseeuw, P. J. and Leroy, A. M. (1987). Roubust Regression and Outlier Detection.
New York: Wiley.
[27] Rousseeuw, P. J. and Van Deiessen, K. (1999). \A Fast Algorithm for the Minimum
Covariance Determinant Estimator". Technometrics, 41, 293-305.
[28] Schabenberger, O. and Pierce F. J. (2002). Contemporary Statistics for the Plant and
Soil Sciences. Boca Raton, Florida: CRC Press.
[29] Seber, G. A. F. and Wild, C. J. (2003). Nonlinear Regression. New York: Wiley.
[30] Stover, F. S. and Brill, R. V. (1998). \Statistical Quality Control Applied to Ion Chro-
matography Calibrations". Journal of Chromatography A, 804, 37-43.
[31] Sullivan, J. H. (2002) \Detection of Multiple Change Points from Clustering Individual
Observations". Journal of Quality Technology, 34, 371-383
[32] Sullivan, J. H. and Woodall, W. H. (1996). \A Comparison of Multivariate Quality
Control Charts for Individual Observations". Journal of Quality Technology, 28, 398-
408.
[33] Tracy. N. D, Young, J. C., and Mason, R. L. (1992). \Multivariate Control Charts for
Individual Observations". Journal of Quality Technology, 24, 88-95.
[34] Varges, J. A. (2003). \Robust Estimation on Multivariate Control Charts for Individual
Observations". Journal of Quality Technology, 35, 367-376.
[35] Walker, E. and Wrihgt, S. P. (2002) \Comparing Curves Using Additive Models". Jour-
nal of Quality Technology, 34, 118-129.
[36] Wang, K. and Tsung, F. (2005). \Using Pro‾le Monitoring Techniques for a Data-rich
Environment with Huge Sample Size". Quality and Reliability Engineering Interna-
tional, 21, 7, 677-688.
[37] Williams, J. B., Woodall, W. H., and Birch, J. B. (2003). \Phase I Analysis of Nonlin-
ear Product and Process Quality Pro‾les". Technical Report No. 03-5, Department of
Statistics, Virginia Polytechnic Institute and State University.
[38] Williams, J. B., Woodall, W. H., and Ferry, N. M. (2006). \Statistical Monitoring of
Heteroscedastic Dose-Response Pro‾les from High-Throughput Screening". Submitted.
[39] Wisnowski, J. W., Simpson, J. R., and Montgomery, D. C. (2002) \A Performance Study
for Multivariate Location and Shape Estimator". Quality and Reliability Engineering
International, 18, 117-129.
[40] Woodall, W. H., Sptizner, D. J., Montgomery, D. C., and Gupta, S. (2004). \Using Con-
trol Charts to Monitor Process and Product Pro‾les". Journal of Quality Technology,
36, 309-319.
[41] Woodru®, D. L. and Rocke, D. M. (1994) \Computable Robust Estimation of Multi-
variate Location and Shape in High Dimension using Compound Estimators." Journal
of the American Statistical Association, 89, 888-896.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top