跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余謝銘
研究生(外文):Ming Yu-Hsieh
論文名稱:k子棋的複雜度和公平性之探討
論文名稱(外文):On the Complexity and Fairness of the Generalized k-in-a-row games
指導教授:蔡錫鈞蔡錫鈞引用關係
指導教授(外文):Shi-Chun Tsai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:48
中文關鍵詞:k子棋公平性多項式空間完備問題
外文關鍵詞:k-in-a-rowfairnessPSPACE-complete
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
Connect(m,n,k,p,q) 是一種兩人玩的棋類遊戲。在m乘n的棋盤上,除了第一個玩家在第一步放上q顆棋子外,兩個玩家分別輪流放上p顆棋子。先在棋盤上達成k顆連續的棋子連成一線的玩家就是贏家。舉例來說,五子棋就是Connect(19,19,5,1,1),六子棋則是Connect(19,19,6,2,1)。我們的論文在探討這類型遊戲的複雜度以及公平性。我們證明了當k>=4p+7且q<=p時,這個遊戲是公平的。我們也證明了當k-p>=max{3,p}時,這類遊戲的難度是PSPACE-complete。
Recently, Wu and Huang[15] introduced a new game called Connect6, where two players, Black and White, alternately place two stones of their own color, black and white respectively, on an empty Go-like board, except for that Black (the first player) places one stone only for the first move. The one who gets six consecutive (horizontally, vertically or diagonally) stones of his color first wins the game. Unlike Go-Moku, Connect6 appears to be fairer and has been adopted as an official competition event in Computer Olympiad 2006.
Connect(m, n, k, p, q) is a generalized family of k-in-a-row games, where two players place p stones on an m×n board alternatively, except Black places q stones in the first move. The one who first gets his stones k-consecutive in a line (horizontally, vertically or diagonally) wins. Connect6 is simply the game of Connect(m, n, 6, 2, 1). In this paper, we study two interesting issues of Connect(m, n, k, p, q): fairness and complexity. First, we prove that no one has a winning strategy in Connect(m, n, k, p, q) starting from an empty board when k >= 4p + 7 and p >= q. Second, we prove that, for any fixed constants k, p such that k-p >= max{3,p} and a given Connect(m, n, k, p, q) position, it is PSPACE-complete to determine whether the first player has a winning strategy. Consequently, this implies that the Connect6 played on an m × n board (i.e., Connect(m, n, 6, 2, 1)) is PSPACE-complete.
1 Introduction and preliminaries 11
2 Fairness 17
3 PSPACE-completeness 23
3.1 Global idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Construction of winning zone and auxiliary zones . . . . . . . 25
3.3 Construction of simulation zone . . . . . . . . . . . . . . . . . 26
3.3.1 Gadgets for vertices . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Gadgets for arcs . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Put it together . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Conclusion and remarks 43
A Drawing 3-planar graphs orthogonally in linear time 45
[1] A.S. Fraenkel, M.R. Garey and D.S. Johnson, The Complecity of Checkers
on an N × N Board - Preliminary Report, In the 19th IEEE Sympo-
sium on Foundations of Computer Science, 55-64, 1978.
[2] S. Iwata and T. Kasai, The Othello game on an n×n board is PSPACEcomplete,
Theoretical Computer Science, 123: 329-340, 1994.
[3] G. Kant, Drawing planar graphs using the canonical ordering, Algorith-
mica, 16(1): 4-32, 1996.
[4] R. Kaye, Minesweeper is NP-complete, Mathematical Intelligencer,
22(2): 9-15, 2000.
[5] D. Lichtenstein and M. Sipser, Go is polynomial-space hard, Journal of
the ACM, 27: 393-401, 1980.
[6] W.-J. Ma, Generalized Tic-tac-toe, http://www.klab.caltech.edu/
~ma/tictactoe.html, 2005.
[7] R.J. Nowakowski, Games of no chance: combinatorial games at MSRI,
Cambridge University Press, 1994.
[8] R.J. Nowakowski, More games of no chance, Cambridge University
Press, 2002.
[9] C.H. Papadimitriou, Computational complexity, Addison Wesley Publishing
Company, 1994.
[10] A. Pluh´ar, The accelerated k-in-a-row game, Theoretical Computer Sci-
ence, 270: 865-875, 2002.
[11] S. Reisch, Gobang ist PSPACE-vollst¨andig (Gobang is PSPACEcomplete),
Acta Informatica, 13: 59-66, 1980.
[12] J.M. Robson, N by N Checkers is EXPTIME complete, SIAM Journal
on Computing, 13(2): 252-267, May 1984.
[13] M. Sipser, Introduction to the Theory of Computation, PWS Publishing
Company, 1997.
[14] H.J. van den Herik, J.W.H.M. Uiterwijk and J. van Rijswijck, Games
Solved: Now and in the Future, Artificial Intelligence, 134: 277-311,
2002.
[15] I.-C.Wu and D.-Y. Huang, A new family of k-in-a-row games, In the 11th
Advances in Computer Games Conference (ACG’11), Taipei, Taiwan,
September 2005.
[16] J. Yolkowski, Tic-tac-toe, http://www.stormloader.com/ajy/
tictactoe.html, 2003.
[17] T.G.L. Zetters, 8(or More) in a Row, American Mathematical Monthly,
87: 575-576, 1980.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top