跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭達人
研究生(外文):Da-Ren Guo
論文名稱:多重射頻多跳躍無線網狀網路下之空間再利用方法
論文名稱(外文):Spatial Reuse in Multi-Radio, Multi-Hop Wireless Mesh Networks
指導教授:王國禎
指導教授(外文):Kuochen Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:29
中文關鍵詞:鏈狀拓撲干擾問題多跳躍多重射頻空間再利用無線網狀網路
外文關鍵詞:chain topologyinterferencemulti-hopmulti-radiospatial reusewireless mesh network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
近來無線網狀網路已躍升為下一代無線網路的一項關鍵技術。無線網狀網路的空間再利用方法可允許多個傳輸通訊同時進行,因此可以大幅地增進整個網路的產量。然而無線網狀網路中的干擾問題是影響空間再利用的一個關鍵因素。在本篇論文中,我們提出了一個不需更改現有IEEE 802.11 MAC的程序機制 - RMP。RMP將無線網狀網路中的干擾問題列入考慮,並且利用事先指定好的傳輸方式來提高空間再利用。和現有的隨機存取方法不同的是,RMP使用了一個分散控制的存取方式來防止節點受到不必要的封包碰撞。RMP採用了可雙向傳輸的鏈狀拓撲,在此鏈狀拓撲中所有節點以等距離部署,使得各節點只能影響其前後兩個節點。模擬結果顯示就網路產量而言,RMP比Ripple [14] 高約30%,而比現有的IEEE 802.11 DCF高約200%。RMP不僅可達到比Ripple更高的產量,還可維持和Ripple一樣的傳輸延遲及傳輸品質。RMP對於CBR及FTP的流量皆可達到穩定的產量及較低的傳輸延遲時間。另外,RMP的設計簡單、部署容易,並且同時解決了在IEEE 802.11無線網路環境中無效率的backoff及碰撞問題。
Recently, wireless mesh networks (WMNs) have emerged as a key technology for next-generation wireless networking. Spatial reuse in a WMN can allow multiple communications to proceed simultaneously; thereby observably improve the overall network throughput. However, interferences between mesh nodes are a critical factor for maximizing the spatial reuse. In the thesis, we propose a novel scheduling mechanism without modifying the existing IEEE 802.11 MAC, called wireless Radio-Matching Protocol (RMP). It takes account of interferences in wireless environments to achieve maximum spatial reuse by using pre-specified radio transmissions. In contrast to existing random access approaches, RMP uses a decentralized controlled access approach to protect nodes from unintentional packet collisions. RMP adopts a chain topology of bidirectional transmissions, where nodes are equally spaced so that radios of non-neighboring nodes do not interference with each other. Simulation results indicate that the throughput of RMP is about 30% better than that of Ripple [14] and almost 200% better than that of the IEEE 802.11 DCF. Although RMP achieves higher throughput than Ripple, it still maintains the same delay time and transmission quality, as verified by our simulation results. RMP achieved a stable throughput and a low end-to-end transmission delay in both CBR and FTP traffic compared to the IEEE 802.11 DCF. In additions, RMP is simple, easy to implement, and it eliminates the back-off inefficiencies and the collision problem in IEEE 802.11 wireless environments.
Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgements v
Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Wireless Mesh Network Architecture 3
Chapter 3 Related Work 5
3.1 Spatial Reuse at the Network Layer 5
3.2 Spatial Reuse at the MAC Layer 7
3.3 Qualitative Comparison 9
Chapter 4 Design Approach 11
4.1 Preliminary 11
4.2 The Operation of RMP 13
Chapter 5 Simulation Results and Discussion 19
5.1 Simulation Model 19
5.2 Comparison with 802.11 DCF and Ripple [14] 19
5.3 Discussion 24
Chapter 6 Conclusions and Future Work 25
6.1 Concluding Remarks 25
6.2 Future Work 25
Bibliography 27
[1] I.F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” in IEEE Communications Magazine, Volume 43, pp. 23 – 30, Sept. 2005.
[2] T.-J. Tsai and J.-W. Chen, “IEEE 802.11 MAC protocol over wireless mesh networks: problems and perspectives,” in Proc. Advanced Information Networking and Applications, Volume 2, pp. 60 – 63, March 2005.
[3] P. Gupta and P.R. Kumar, “The capacity of wireless networks,” in IEEE Transactions on Information Theory, Volume 46, pp. 388 – 404, March 2000.
[4] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification protocol for IEEE 802.11 wireless networks,” in Proc. BroadNets, pp. 344 – 354, 2004.
[5] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-radio, Multi-hop Wireless Mesh Networks,” in Proc. ACM MobiCom, September 2004.
[6] R. Draves, J. Padhye, and B. Zill, “Comparison of Routing Metrics for Static Multi-Hop Wireless Networks,” in Proc. ACM SIGCOMM, August 2004.
[7] C. Zhu, M.J. Lee, and T. Saadawi, “On the route discovery latency of wireless mesh networks,” in Proc. IEEE CCNC, pp. 19 – 23, Jan. 2005.
[8] L. Fu, Z. Cao, and P. Fan, “Spatial reuse in IEEE 802.16 based wireless mesh networks,” in Proc. IEEE ISCIT, Volume 2, pp.1358 – 1361, Oct. 2005.
[9] H.-Y. Wei, S. Ganguly, R. Izmailov, and, Z.J. Haas, “Interference-aware IEEE 802.16 WiMax mesh networks,” in Proc. IEEE VTC, Volume 5, pp. 3102 – 3106, Jun. 2005.
[10] J. Zhu and S. Roy, “802.11 mesh networks with two-radio access points,” in Proc. IEEE ICC, Volume 5, pp. 3609 – 3615, May 2005.
[11] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, “WTRP–Wireless token ring protocol,” in IEEE Trans Commun., vol. 53, pp. 1863 – 1881, Nov. 2004.
[12] E., M., D. Lee, R. Sengupta, and P. Varaiya, “Wireless token ring protocol-performance comparison with IEEE 802.11,” in Proc. IEEE IS, vol.2, pp. 710 – 715, 2003.
[13] A. Acharya, A. Misra, and S. Bansal, “Design and analysis of a cooperative medium access scheme for wireless mesh networks,” in Proc. BroadNets, pp. 621 – 631, 2004.
[14] Ray-Guang Cheng, Cun-Yi Wang, Li-Hung Liao, and Jen-Shun Yang, “Ripple: a wireless token-passing protocol for multi-hop wireless mesh networks,” in IEEE Communications Letters,Volume 10, pp.123 – 125, Feb. 2006.
[15] USC/ISI, “Network Simulator 2 (NS2),” [Online] Available: http://www.isi.edu/nsnam/ns/.
[16] J. Zhu, X. Guo, L.L. Yang, and W.S. Conner, “Leveraging spatial reuse in 802.11 mesh networks with enhanced physical carrier sensing,” in Proc. IEEE International Conference, Volume 7, pp. 4004 – 4011, June 2004.
[17] J. Deng, B. Liang, and P.K. Varshney, “Tuning the carrier sensing range of IEEE 802.11 MAC,” in IEEE GLOBECOM, Volume, pp. 2987 – 2991, Nov.-3 Dec. 2004.
[18] C.E. Seo, E.J. Leonardo, P. Cardieri, M.D. Yacoub, D.M. Gallego, and A.A.M. de Medeiros, “Performance of IEEE 802.11 in wireless mesh networks,” in Proc. IEEE MTT-S Conf., pp. 363 – 367, July 2005.
[19] J. Li, C. Blake, D. S. De Couto, H. I. Lee, and R. Morris, “Capacity of ad hoc wireless networks,” in Proc. ACM MobiCom, pp. 61 – 69, July 2001.
[20] IEEE Std. 802/11, IEEE Computer Society LAN MAN Standard Committee, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1997.
[21] X.G. Guo, S. Roy, and W.S. Conner., “Spatial reuse in wireless ad-hoc networks,” IEEE VTC, Volume 3, pp. 1437 – 1442, Oct. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top