跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/02 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林學億
研究生(外文):Hsueh-Yi Sean Lin
論文名稱:三維多邊形處理、檢索及驗證方法
論文名稱(外文):3-D Mesh Processing, Retrieval, and Authentication
指導教授:廖弘源廖弘源引用關係林志青林志青引用關係
指導教授(外文):Hong-Yuan Mark LiaoJa-Chen Lin
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:153
中文關鍵詞:驗證認知心理學脆弱型數位浮水印多邊形物件分解參數化方法視覺感知組織物件檢索篡改偵測視覺感知特徵性
外文關鍵詞:AuthenticationCognitive PsychologyFragile WatermarkingMesh DecompositionParameterizationPerceptual OrganizationShape RetrievalTampering DetectionVisual Salience
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:2
本論文提出了三種適於計算機圖學之相關應用的多邊形處理技術。首先,我們提出一種利用視覺感知特徵為引導的三維多邊形物件分解方法。所提方法利用視覺感知相關的特徵引導三維多邊形物件的分解過程。由於特徵擷取法係根基於認知心理學中的視覺特點理論,因此所提分解方法能夠適切地仿傚人類視覺對物件之構成要素的感知能力。透過物件的拆解/分解,有許多計算機圖學為主的應用能夠達到效能的提升。這些應用包括:碰撞偵測、熱幅射能量成像模擬、強健式傳輸與連續式傳輸、材質貼圖、三維形變、多邊形化簡與壓縮法、以骨架為主的動畫製作以及三維物件檢索系統。透過研究考察,我們發現既有的三維物件檢索系統缺乏心理學理論的支撐與連結。反觀心裡學領域,許多認知心裡學專家已提出了許多重要的理論(或規則)闡述人類視覺對物件或型式的感知過程。有鑑於此,在第二項研究中,我們提出了一套以認知心理學為基礎的三維物件檢索系統。我們將具體化源自於認知心理學領域的概念性理論,用以設計特徵擷取及比對方法,並進而實現一套能仿傚人類對物件辨識與認知處理的三維物件檢索系統。在第三項研究中,為了讓使用者能驗證與偵測所擷取之三維物件的篡改與否,我們提出一種利用新的脆弱型浮水印技術以達到篡改偵測與驗證的目的。所提方法所嵌入之浮水印除了能抵抗一些非惡意的幾何處理(如頂點座標量化及頂點順序重組),尚能利用視覺檢視三維多邊形物件的篡改處。
In this dissertation, we propose three mesh processing techniques for 3-D graphics-related applications. First, we propose a novel mesh decomposition scheme called ``visual salience-guided mesh decomposition,'' which uses visually salient features to guide the mesh decomposition process. Since the features adopted are closely related to the psychology-based theory of visual salience, the decomposition process can appropriately mimic the function of a human visual system. There are a variety of applications that benefit from breaking up a 3-D object into components. These applications include collision detection, radiosity simulations, robust transmission and streaming, texture mapping, metamorphosis, 3-D shape retrieval, simplification and compression, watermarking, and control skeleton extraction for key-frame animation. In our investigation, the existing 3-D shape analysis and retrieval algorithms are lack of explicit link to psychology-based principles, while cognitive psychologists have found a set of principles (or properties) that are fairly important in perception of a form or a shape. This motivates us to conduct our second work called ``a cognitive psychology-based approach for 3-D shape retrieval.'' In this work, we incorporate a set of principles, which is originated from cognitive psychology, into the design of 3-D shape retrieval system. The proposed approach is intended for mimicking human visual perception and recognition based on the psychology-based rules proposed by Hoffman and Singh. In addition, our system realizes a ``recognition-by-components'' and ``recognition-by-visually-salient-components'' search strategies. Moreover, use of combined search strategies can perform a coarse-to-fine retrieval task. In our third work, to provide a user with an ability to verify the integrity of the content he/she received (or retrieved), we propose a new fragile watermarking scheme for authenticating 3-D polygonal meshes. The proposed scheme can not only achieve localization of malicious modifications in visual inspection, but also is immune to certain incidental data processings, such as quantization of vertex coordinates and vertex reordering.
Abstract in Chinese i
Abstract in English iii
Dedication v
Acknowledgements vii
Table of Contents ix
List of Tables xi
List of Figures xii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Concepts about Mesh-based Representation for 3-D Objects 3
1.3 Overview of the Proposed Methods . . . . . . . . . . . . . . . . . 6
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . 8
2 Visual Salience-Guided Mesh Decomposition 9
2.1 Review of Hoffman and Singh’s Theory of Part Salience . . . . . . 13
2.2 Visual Salience-Guided Mesh Decomposition . . . . . . . . . . . . 17
2.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 A Cognitive Psychology-based Approach for 3-D Shape Retrieval 45
3.1 Theory of Part Salience and Its Importance in Visual Perception . 49
3.2 A Cognitive Psychology-based Approach for 3-D Shape Retrieval . 53
3.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 74
4 Fragile Watermarking for Authenticating 3-D Polygonal Meshes 77
4.1 Yeo and Yeung’s Approach and Its Drawbacks . . . . . . . . . . . 79
4.2 The Proposed Fragile Watermarking Method . . . . . . . . . . . . 82
4.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Conclusions and Future Work 107
[1] M. Alexa, “Merging Polyhedral Shapes with Scattered Features,” The Visual
Computer, Vol. 16, No. 1, pp. 26-37, 2000.
[2] Alta Vista: Altavista Search Engine (http://www.altavista.com/), 1995.
[3] N. Aspert, E. Drelie, Y. Maret, and T. Ebrahimi, “Steganography for
Three-Dimensional Polygonal Meshes,” in Proc. SPIE, Vol. 4970, 2002.
[4] G. Barequet and M. Sharir, “Filling Gaps in the Boundary of a Polyhedron,”
Computer Aided Geometric Design, Vol. 12, No. 2, pp. 207-229,
Mar. 1995.
[5] O. Benedens, “Two High Capacity Methods for Embedding Public Watermarks
into 3-D Polygonal Models,” in Proc. Multimedia and Security-
Workshop at ACM Multimedia, Orlando, Florida, 1999, pp. 95-99.
[6] O. Benedens, “Geometry-BasedWatermarking of 3-D Models,” IEEE Computer
Graphics and Applications, Vol. 19, pp. 46-45, 1999.
[7] O. Benedens, “Affine Invariant Watermarks for 3-D Polygonal and NURBS
Based Models,” in Proc. Information Security Workshop, Wollongon, Australia,
2000, pp. 20-21.
[8] O. Benedens and C. Busch, “Towards Blind Detection of Robust Watermarks
in Polygonal Models,” in Proc. EUROGRAPHICS, Vol. 19, Amsterdam,
Netherlands, 2000, pp. C199-C208.
[9] O. Benedens, “Robust Watermarking and Affine Registration of 3-D
Meshes,” in Proc. Information Hiding, Noordwijkerhout, The Netherlands,
2002, pp. 177-195.
[10] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,”
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 13, No. 3, pp.
209-216, Mar. 1991.
[11] I. Biederman, “Recognition-By-Components: A Theory of Human Image
Understanding,” Psychological Review, Vol. 94, pp. 115-147, 1987.
[12] H. Biermann, A. Levin, and D. Zorin, �Piecewise Smooth Subdivision Surfaces
with Normal Control,?in Proc. ACM SIGGRAPH, New Orleans,
Louisiana, 2000, pp. 113-120.
[13] H. Biermann, I. Martin, F. Bernardini, and D. Zorin, �Cut-and-Paste Editing
of Multiresolution Surfaces,?in Proc. ACM SIGGRAPH, San Antonio,
Texas, 2002, pp. 312-321.
[14] S. Bischoff and L. Kobbelt, �Ellipsoid Decomposition of 3-D Models,?
in Proc. 1st Int. Symposium on 3-D Data Processing, Visualization, and
Transmission, Padova, Italy, 2002, pp. 480-488.
[15] S. Bischoff and L. Kobbelt, �Streaming 3-D Geometry Data Over Lossy
Communication Channels,?in Proc. IEEE Int. Conf. Multimedia and Expo,
Lausanne, Switzerland, 2002, pp. 361-364.
[16] S. Brin and L. Page, �The Anatomy of A Large-scale Hypertextual Web
Search Engine,?Computer Networks and ISDN Systems, Vol. 30, pp. 107-
117, 1998.
[17] P. J. Burt and E. H. Adelson, �Laplacian Pyramid as A Compact Image
Code,?IEEE Trans. Communications, Vol. 31, No. 4, pp. 532-540, 1983.
[18] F. Cayre and B. Macq, �Data Hiding on 3-D Triangle Meshes,?IEEE.
Trans. Signal Processing, Vol. 51, No. 4, pp. 939-949, 2003.
[19] F. Cayre, P. Rondao-Alface, F. Schmitt, B. Macq, and H. Ma��tre, �Application
of Spectral Decomposition to Compression and Watermarking of
3-D Triangle Mesh Geometry,?Signal Processing: Image Communication,
Vol. 18, pp. 309-319, 2003.
[20] L.-F. Chen, H.-Y. Mark. Liao, and J.-C. Lin, �Wavelet-Based Optical Flow
Estimation,?IEEE Trans. Circuits and Systems for Video Technology, Vol.
12, No. 1, pp. 1-12, 2002.
[21] D.-Y Chen, X.-P. Tian, Y.-T. Shen and M. Ouhyoung, �On Visual
Similarity Based 3D Model Retrieval ,?Computer Graphics Forum
(EUROGRAPHICS?3), Vol. 22, No. 3, pp. 223-232, Sept. 2003
(http://3d.csie.ntu.edu.tw/dynamic/).
[22] J.-H. Chuang, C.-H. Tsai, and M.-C. Ko, �Skeletonization of Three-
Dimensional Object Using Generalized Potential Field,?IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1241-1251,
2000.
[23] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
McGraw-Hill, 2001.
[24] J. Corney, H. Rea, D. Clark, J. Pritchard, M. Breaks, and R. MacLeod,
“Coarse Filters for Shape Matching,” IEEE Computer Graphics and Applications,
Vol. 22, No. 3, pp. 65-74, May/June 2002
[25] I. Daubechies, I. Guskov, P. Schroder, and W. Sweldens, “Wavelets on
Irregular Point Sets,” Phil. Trans. R. Soc. Lon. A., Vol. 357, No. 1760,
pp. 2397-2413, 1999. (Also as part of book entitled Wavelets: The Key to
Intermittent Information, edited by B.W. Silverman and J.C. Vassilicos, to
be released in September 2000.)
[26] M. Desbrun, M. Meyer, P. Schr‥oder, and A. Barr, “Implicit Fairing of Irregular
Meshes Using Diffusion and Curvature Flow,” in Proc. ACM SIGGRAPH,
Los Angeles, CA, 1999, pp. 317-324.
[27] T. K. Dey, H. Edelsbrunner, S. Guha and D. V. Nekhayev,
“Topology Preserving Edge Contraction,” Publications De L’Institut
Math’ematique(Beograd) (N.S.), Vol. 66, No. 80, pp. 23-45, 1999.
[28] C. Dorai and A. K. Jain, “COSMOS–A Representation Scheme for 3-D
Free-Form Objects,” IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 19, No. 10, pp. 1115-1130, 1997.
[29] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle,
“Multiresolution Analysis of Arbitrary Meshes,” in Proc. ACM SIGGRAPH,
Los Angeles, CA, 1995, pp. 173-182
[30] M. Elad, A. Tal, and S. Ar, “Content Based Retrieval of VRML Objects:
An Iterative and Interactive Approach,” EG Multimedia, pp. 97-108, Sept.
2001.
[31] Fast Spherical Harmonic Transforms: SpharmonicKit 2.5
(http://www.cs.dartmouth.edu/geelong/sphere/), 1998.
[32] FindSounds: Sound File Search Engine (http://www.findsounds.com/),
1998.
[33] M. S. Floater, “Parameterization and Smooth Approximation of Surface
Triangulations,” Computer Aided Geometric Design, Vol. 14, No. 3, pp.
231-250, 1997.
[34] C. Fornaro and A. Sanna, “Public Key Watermarking for Authentication of
CSG Models,” Computer-Aided Design, Vol. 32, No. 12, pp. 727-735, 2000.
[35] K. Fujiwara, “Eigenvalues of Laplacians on A Closed Riemannian Manifold
and Its Nets,” in Proc. of AMS. Vol. 123, pp. 2585-2594, 1995.
[36] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin,
and D. Jacobs, “A Search Engine for 3-D Models,” ACM Trans. on Graphics,
Vol. 22, No. 1, pp. 83-105, Jan. 2003.
[37] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by Example,” ACM Trans.
Graphics, Vol. 23, No. 3, pp. 652-663, 2004 (Special issue: Proc. ACM
SIGGRAPH 2004).
[38] T. Funkhouser and M. Kazhdan, Course 15: Shape-Based Retrieval and
Analysis of 3-D Models, ACM SIGGRAPH Course Note, 2004.
[39] M. Garland and P. S. Heckbert, “Surface Simplification Using Quadric
Error Metrics,” in Proc. ACM SIGGRAPH, Los Angeles, CA, 1997, pp.
209-216.
[40] M. Garland, A. Willmott, and P. S. Heckbert, “Hierarchical Face Clustering
on Polygonal Surfaces,” in Proc. ACM Symposium on Interactive 3-D
Graphics, 2001, pp. 49-58.
[41] A. Goldberg and R. Tarjan, “A New Approach to the Maximum Flow
Problem,” Journal of the ACM, Vol. 35, No. 1, pp. 921-940, 1988
[42] Google Image Search (http://www.google.com/images).
[43] E. Gotsman, X. Gu, and A. Sheffer, “Fundamental of Spherical Parameterization,”
ACM Trans. on Graphics, Vol. 22, No. 3, pp. 358-363, Aug. 2003
(Special issue: Proc. ACM SIGGRAPH 2003).
[44] A. Gu’eziec, G. Taubin, F. Lazarus, and B. Horn, “Cutting and Stitching:
Converting Sets of Polygons to Manifold Surfaces,” IEEE Trans. Visualization
and Computer Graphics, Vol. 7, No. 2, pp. 136-151, 2001.
[45] V. Guillemin and A. Pollack, Differential Topology, Englewood Cliffs, N. J.
: Prentic Hall, 1974.
[46] I. Guskov, W. Sweldens, and P. Schr‥oder, “Multiresolution Signal Processing
for Meshes,” in Proc. ACM SIGGRAPH, Los Angeles, CA, 1999, pp.
325-334.
[47] I. Goskov, K. Vidimˇce, W. Sweldens, and P. Schr‥oder, “Normal Meshes,”
in Proc. ACM SIGGRAPH, New Orleans, Louisiana, 2000, pp. 95-102.
[48] M. Hebert, K. Ikeuchi, and H. Delingette, “A Spherical Representation
for Recognition of Free-Form Surfaces,” IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. 17, No. 7, pp. 681-690, 1995.
[49] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology Matching
for Fully Automatic Similarity Estimation of 3-D Shapes,” in Proc.
ACM SIGGRAPH, Los Angeles, CA, 2001, pp. 203-212.
[50] D. D. Hoffman, “Parts of Recognition,” Cognition, Vol. 18, pp. 65-96, 1984.
[51] D. D. Hoffman and M. Singh, “Salience of Visual Parts,” Cognition, Vol.
63, pp. 29-78, 1997.
[52] H. Hoppe, “Progressive Meshes,” in Proc. ACM SIGGRAPH, New Orleans,
Louisiana, 1996, pp. 99-108.
[53] B. Horn, “Extended Gaussian Images,” Proceedings of the IEEE, Vol. 72,
pp. 1656-1678, 1987.
[54] A. Hubeli and M. Gross, “Multiresolution Feature Extraction from Unstructured
Meshes,” in Proc. IEEE Visualization, San Diego, CA, 2001,
pp. 287-294.
[55] T. Igarashi, S. Matsuoka, H. Tanaka, “Teddy: A Sketching Interface for
3-D Freeform Design,” in Proc. ACM SIGGRAPH, Los Angeles, CA, 1999,
pp.409-416.
[56] A. Johnson and M. Hebert, “Control of Polygonal Mesh Resolution for 3-D
Computer Vision,” Graphical Models and Image Processing, Vol. 60, pp.
261-285, 1998.
[57] A. Johnson and M. Hebert, “Using Spin-Images for Efficient Multiple Model
Recognition in Cluttered 3-D Scenes,” IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. 21, pp. 433-449, 1999.
[58] T. Ju, “Robust Repair of Polygonal Models,” ACM Trans. on Graphics,
Vol. 23, No. 3, pp. 888-895, Aug. 2004 (Special Issue: Proc. ACM SIGGRAPH
1004).
[59] S. Kanai, H. Date, and T. Kishinami, “Digital Watermarking for 3-D Polygons
Using Multiresolution Wavelet Decomposition,” in Proc. Sixth IFIP
WG 5.2 GEO-6, Tokyo, Japan, 1998, pp. 296-307.
[60] M. S. Kankanhalli, E.-C. Chang, X. Guan, Z. Huang, and Y. Wu, “Authentication
of Volume Data Using Wavelet-Based Foveation,” in Proc. the
Sixth Eurographics Workshop on Multimedia, Manchester, UK, 2001.
[61] Z. Karni and C. Gotsman, “Spectral Compression of Mesh Geometry,” in
Proc. ACM SIGGRAPH, New Orleans, Louisiana, 2000, pp. 279-286.
[62] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using Fuzzy Clustering
and Cuts,” ACM Trans. Graphics, Vol. 22, No. 3, July 2003 (Special
issue: Proc. ACM SIGGRAPH 2003).
[63] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation Using Feature Point
and Core Extraction,” in Visual Computer, Vol. 21, No. 8-10, pp. 865-875,
2005.
[64] M. Kazhdan, T. Funkhouser and S. Rusinkiewicz, “Rotation Invariant
Spherical Harmonic Representation of 3-D Shape Descriptor,” Symposium
on Geometry Processing, pp. 167-175, 2003.
[65] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and S. Rusinkiewicz,
“A Reflective Symmetry Descriptor for 3-D Models,” Algorithmica: Special
Issue, Vol. 38, No. 2, pp. 201-225, Nov. 2003.
[66] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Shape Matching and
Anisotropy,” ACM Trans. on Graphics, Vol. 23, No. 3, pp. 623-629, Aug.
2004 (Special issue: Proc. ACM SIGGRAPH).
[67] A. Khodakovsky, P. Schroder, and W. Sweldens, “Progressive Geometry
Compression,” in Proc. ACM SIGGRAPH, New Orleans, Louisiana, 2000,
pp. 271-278.
[68] B. Koh and T. Chen, “Progressive Browsing of 3-D Models,” in Proc.
IEEE Signal Processing Society Workshop on Multimedia Signal Processing,
Copenhagen, Denmark, 1999, pp. 71-76.
[69] I. Kolonias, D. Tzovaras; S. Malassiotis, M.G. Strintzis, “Fast Contentbased
Search of VRML Models Based on Shape Descriptors,” IEEE Trans.
Multimedia, Vol. 7, No. 1, pp. 114-126, Feb. 2005.
[70] F. Lazarus and A. Veroust, “Level Set Diagrams of Polyhedral Objects,”
in Proc. ACM Symposium on Solid Modeling and Applications, 1999, pp.
130-140.
[71] A. W. F. Lee, W. Sweldens, P. Schr‥oder, L. Cowsar, and D. Dobkin,
“MAPS: Multiresolution Adaptive Parameterization of Surfaces,” in Proc.
ACM SIGGRAPH, Orlando, Florida, 1998, pp. 95-104.
[72] B. L’evy, S. Petitjean, N. Ray, and J. Maillot, “Least Square Conformal
Maps for Automatic Texture Atlas Generation,” in Proc. ACM SIGGRAPH,
San Antonio, TX, 2002, pp. 362-371.
[73] J. Li and C.-C. Jay Kuo, “Progressive Coding of 3-D Graphic Models,”
Proceedings of the IEEE, Vol. 86, No. 6, pp. 1052-1063, 1998.
[74] X. Li, T. W. Woon, T. S. Tan, and Z. Huang, “Decomposing Polygon
Meshes for Interactive Applications,” in Proc. ACM Symposium on Interactive
3-D Graphics, 2001, pp. 35-42.
[75] J. M. Lien and N. M. Amato, “Approximate Convex Decomposition,” in
Proc. ACM Symposium on Computational Geometry, Brooklyn, New York,
Jun, 2004, pp. 457-458.
[76] P. Liepa, “Filling Holes in Meshes,” Eurographics Symposium on Geometry
Processing, pp. 200-205, 2003.
[77] H.-Y. Sean Lin, H.-Y. Mark Liao, and J.-C. Lin, “Visual Salience-Guided
Mesh Decomposition,” in Proc. IEEE International Workshop on Multimedia
Signal Processing, Siena, Italy, Sept. 29-Oct. 1, 2004.
[78] H.-Y. S. Lin, H.-Y. M. Liao, and J.-C. Lin, “A Cognitive Psychology-based
Approach for 3-D Shape Retrieval,” Proc. IEEE Int. Conf. on Multimedia
and Expo, Amsterdam, The Netherlands, July 2005.
[79] H.-Y. S. Lin, H.-Y. M. Liao, C.-S. Lu, and J.-C. Lin, “FragileWatermarking
for Authenticating 3-D Polygonal Models,” IEEE Trans. Multimedia, Vol.
7, No. 6, pp. 997-1006, Dec. 2005.
[80] R. Liu and H. Zhang, “Segmentation of 3-D Meshes through Spectral
Clustering,” in Pacific Conference on Computer Graphics and Appications,
Seoul, Korea, Oct 6-8, 2004, pp. 298-305.
[81] M. Lounsbery, T. DeRose, J. D. Warren, “Multiresolution Analysis for
Surfaces of Arbitrary Topological Type,” ACM Trans. Graph. Vol. 16, No.
1, pp. 34-73, 1997.
[82] D. P. Luebke, “A Developer’s Survey of Polygonal Simplification Algorithms,”
IEEE Computer Graphics and Application, Vol. 21, No. 3, pp.
34-35, 2001.
[83] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation,” IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 11, No. 7, pp. 674-693, 1989.
[84] A. Mangan and R. Whitaker, “Partitioning 3-D Surface Meshes Using Watershed
Segmentation,” IEEE Trans. Visualization and Computer Graphics,
Vol. 5, No. 4, pp. 308-321, 2001.
[85] X. Mao, M. Shiba, and A. Imamiya, “Watermarking 3-D Geometric Models
through Triangle Subdivision,” in Proc. SPIE, Vol. 4314, 2001, pp. 253-260.
[86] MeshNose: The 3-D Shape Objects Search Engine
(http://www.deepfx.com/mehnose).
[87] R. Ohbuchi, H. Masuda, and M. Aono, “Watermarking Three-Dimensional
Polygonal Models Through Geometric and Topological Modifications,”
IEEE J. Select. Areas in Commun., Vol. 16, pp. 551-560, 1998.
[88] R. Ohbuchi, H. Masuda, and M. Aono, “Data Embedding for Geometrical
and Non-Geometrical Targets in Three-Dimensional Polygonal Models,”
Computer Commun., Vol. 21, pp. 1344-1354, 1998.
[89] R. Ohbuchi, H. Masuda, and M. Aono, “A Shape-Preserving Data Embedding
Algorithm for NURBS Curves and Surfaces,” in Proc. Computer
Graphics International, Canmore, Alberta Canada, 1999, pp. 177-180.
[90] R. Ohbuchi, S. Takahashi, and T. Miyazawa, “Watermarking 3-D Polygonal
Meshes in the Mesh Spectral Domain,” in Proc. Graphics Interface,
Ontario, Canada, 2001, pp. 9-17.
[91] R. Ohbuchi, A. Mukaiyama, and S. Takahashi, “A Frequency-Domain Approach
to Watermarking 3-D Shapes,” in Proc. EUROGRAPHICS, Vol. 21,
Saarbrucken, Germany, 2002, pp. 373-382.
[92] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape Distributions,”
ACM Trans. on Graphics, Vol. 21, No. 4, pp. 807-832, Oct. 2002.
[93] D. L. Page, A. F. Koschan, and M. A. Abidi, “Perception-based 3-D Triangle
Mesh Segmentation Using Fast Marching Watersheds,” Proc. Computer
Vision and Pattern Recognition, Vol. 2, pp. II27-32, 2003.
[94] E. Paquet and M. Rioux, “Nefertiti: A Query by Content System for Threedimensional
Model and Image Database Management,” Image and Vision
Computing, Vol. 17, pp. 157-166, 1999.
[95] E. Paquet, M. Rioux, A. Murching, T. Naveen, and A. Tabatabai, “Description
of Shape Information for 2-D and 3-D Objects,” Signal Processing:
Image Communication, Vol. 16, pp. 103-122, 2000.
[96] J. R. Parker, Algorithms for Image Processing and Computer Vision. John
Wiley and Sons, Inc, 1996.
[97] J. Peng and C.-C. Jay Kuo, “Geometry-guided Progressive Lossless 3-D
Mesh Coding with Octree (OT) Decomposition,” ACM Trans. on Graphics,
Vol. 24, No. 3, pp. 609-616, August 2005 (Special issue: Proc. ACM
SIGGRAPH 2005).
[98] E. Praun, H. Hoppe, and A. Finkelstein, “Robust Mesh Watermarking,” in
Proc. ACM SIGGRAPH, Los Angeles, CA, 1999, pp. 49-56.
[99] E. Praun, W. Sweldens, and P. Schr‥oder, “Consistent Mesh Parameterizations,”
in Proc. ACM SIGGRAPH, Los Angeles, CA, 2001, pp. 179-184.
[100] E. Praun and H. Hoppe, “Spherical Parameterization and Remeshing,”
ACM Trans. on Graphics, Vol. 22, No. 3, pp. 340-349, Aug. 2003 (Special
issue: Proc. ACM SIGGRAPH 2003).
[101] Princeton 3-D Model Search Engine (http://shape.cs.princeton.edu).
[102] T. R. Reed and H. Wechsler, “Segmentation of Textured Images and
Gestalt Organization Using Spatial/Spatial-Frequency Representations,”
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, No. 1,
pp. 1-12, 1990.
[103] C. R‥ossl, L. Kobbelt, and H. P. Seidel, “Extraction of Feature Lines on Triangulated
Surfaces Using Morphological Operators,” in Symposium Smart
Graphics, Stanford University, 2000.
[104] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, “Relevance Feedback: A
Power Tool for Interactive Content-based Image Retrieval,” IEEE Trans.
Circuits and Systems for Video Technology, Vol. 8, No. 5, pp. 644-655, Sept.
1998.
[105] P. Sander, Z. Wood, G. Gortler, J. Snyder, and H. Hoppe, “Multi-Chart
Geometry Images,” in Proc. Eurographics Symposium on Geometry Processing,
2003, pp. 146-155.
[106] S. Sarkar and K. L. Boyer, “Perceptual Organization in Computer Vision:
A Review and A Proposal for A Classificatory Structure,” IEEE Trans.
System, Man, and Cybernetics, Vol. 23, No. 23, pp. 382-400, 1993.
[107] P. Schr‥oder and W. Sweldens, “SphericalWavelets: Efficiently Representing
Functions on the Sphere,” Proc. ACM SIGGRAPH, Los Angeles, CA, pp.
161-172, 1995.
[108] J. P. Serra, Image Analysis and Mathematical Morphology. London: Academic
Press, 1982.
[109] C. Shen, J. F. O’Brien, and J. R. Shewchuk, “Interpolating and Approximating
Implicit Surfaces from Polygon Soup,” ACM Trans. on Graphics,
Vol. 23, No. 3, pp. 896-904, 2004 (Special issue: Proc. ACM SIGGRAPH).
[110] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 888-
905, 2000.
[111] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surface Coding Based on
Morse Theory,” IEEE Computer Graphics and Applications, Vol. 11, No.
5, pp. 66-78, 1991.
[112] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of Polyhedral Surfaces
Using Decomposition,” in Proc. EUROGRAPHICS, 2002, pp. 219-228.
[113] H.-Y. Shum, M. Hebert, and K. Ikeuchi, “On Shape Similarity,” Proc.
Computer Vision and Pattern Recognition, pp. 526-531, 1996.
[114] K. Siddiqi and B. B. Kimia, “Part of Visual Form: Computational Aspects,”
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 17,
No. 3, pp. 239-251, 1995.
[115] S. Svensson and G. S. Baja, “Using Distance Transforms to Decompose
3-D Discrete Objects,” Image and Vision Computing, Vol. 20, pp. 529-540,
2002.
[116] W. Sweldens and P. Schr‥oder, Course 50: Digital Geometry Processing,
ACM SIGGRAPH Course Note, 2001.
[117] J. W. H. Tangelder and R. C. Veltkamp, “A Survey of Content Based 3-D
Shape Retrieval Methods,” Proc. Shape Modeling International, pp. 145-
156, 2004.
[118] G. Taubin, “A Signal Processing Approach to Fair Surface Design,” in Proc.
ACM SIGGRAPH, Los Angeles, CA, 1995, pp. 351-358.
[119] G. Taubin and J. Rossignac, “Geometric Compression through Topological
Surgery,” ACM Trans. on Graphics, Vol. 17, No. 2, pp. 84-115, 1998.
[120] G. Turk, “Re-tiling Polygonal Surfaces,” in Proc. ACM SIGGRAPH,
Chicago, IL, 1992, pp. 55-64.
[121] G. Turk, “Generating Random Points in Triangles,” in Graphics Gems,
edited by Andrew Glassner, Academic Press, 1999.
[122] VideoQ: A Object Oriented Video Search Engine
(http://persia.ee.columbia.edu/VideoQ/), 1997.
[123] D. Vranic and D. Saupe, “3-D Model Retrieval with Spherical Harmonics
and Moments,” Proc. of the DAGM, pp. 392-397, 2001.
[124] D. Vranic, “An Improvement of Rotation Invariant 3-D Shape Descriptor
Based on Functions on Concentric Spheres,” IEEE Int. Conf. on Image
Processing, Sept. 2003.
[125] M. G. Wagner, “Robust Watermarking of Polygonal Meshes,” in Proc. Geometric
Modeling and Processing, Hong Kong, China, 2000, pp. 201-208.
[126] WebSEEK: A Content-based Image and Video Catalog and Search System
(http://persia.ee.columbia.edu:8008/), 1996.
[127] K. Wu and M. D. Levine, “3-D Part Segmentation Using Simulated Electrical
Charge Distributions,” IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol. 19, No. 11, pp. 1223-1235, 1997.
[128] Y. Xiao, P. Siebert, and N. Werghi, “A Discrete Reeb Graph Approach for
the Segmentation of Human Body Scans,” Proc. 3-D Digital Imaging and
Modeling, 2003, pp. 378-385.
[129] Yahoo (http://www.yahoo.com.tw/).
[130] Z. Yan, S. Kumar, and C.-C. Jay Kuo, “Mesh Segmentation Schemes for
Error Resilient Coding of 3-D Graphic Models,” IEEE Trans. on Circuits
and Systems for Video Technology, Vol. 15, No. 1, pp. 138-144, January
2005.
[131] B. L. Yeo and M. M. Yeung, “Watermarking 3-D Objects for Verification,”
IEEE Computer Graphics and Application, Vol. 19, pp. 36-45, 1999.
[132] M. M. Yeung and B. L. Yeo, “An Invisible Watermarking Technique for
Image Verification,” in Proc. Into’l Conf. Image Processing, Piscataway,
N.J., 1997, Vol. 2, pp. 680-683.
[133] K. Yin, Z. Pan, S. Jiaoying, and D. Zhang, “Robust Mesh Watermarking
Based on Multiresolution Processing,” Computers and Graphics, Vol. 25,
pp. 409-420, 2001.
[134] C. T. Zahn, “Graph-Theoretical Methods for Detecting and Describing
Gestalt Clusters,” IEEE Trans. Computers, Vol. C-20, No. 1, pp. 68-86,
1971.
[135] C. Zhang and T. Chen, “Efficient Feature Extraction for 2-D/3-D Objects
in Mesh Representation,” Proc. IEEE Int. Conf. Image Processing, Vol. 3,
pp. 935-938, 2001.
[136] S. C. Zhu, “Embedding Gestalt Laws in Markov Random Fields,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 21, No. 11, pp.
1170-1187, 1999.
[137] D. Zorin, P. Schr‥oder, and W. Sweldens, “Interactive Multiresolution Mesh
Editing,” in Proc. ACM SIGGRAPH, Los Angeles, CA, 1997, pp. 256-268.
[138] E. Zuckerberger, A. Tal, and S. Shlafman, “Polyhedral Surface Decomposition
with Applications,” Computers and Graphics, Vol. 26, No. 5, pp.
733-743, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top