跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宛蓉
研究生(外文):Wang-Jung Lee
論文名稱:結合序列規則及協同過濾之產品推薦方法
論文名稱(外文):A Hybrid of Sequential Rules and Collaborative Filtering for Product Recommendation
指導教授:劉敦仁劉敦仁引用關係
指導教授(外文):Duen-Ren Liu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:44
中文關鍵詞:序列規則客戶分群產品推薦協同式過濾推薦
外文關鍵詞:Sequential RuleCustomer SegmentationProduct RecommendationCollaborative Filtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
客戶之購買行為會隨時間而有所差異,傳統協同式過濾推薦方法依據目標客戶之相似客戶購買行為進行推薦,並未考慮客戶在不同時期之購買行為。而序列規則推薦方法主要是分析客戶在不同時期之序列購買行為,以萃取客戶若在過去時期具有此序列購買行為,則目前時期會具備之購買行為何之序列規則。如果目標客戶過去時期購買行為符合(或相似)序列規則之過去時期購買行為,則可推論目標客戶於目前(推薦)時期可能會具備此序列規則之目前時期購買行為,並進行推薦,然而其並未考量目標客戶在目前推薦時期已有之購買行為。本研究提出一個新的混合式推薦方法,根據客戶最近購買時間,購買次數與金額進行客戶分群,並結合序列規則與協同過濾推薦方法進行推薦。所提方法針對每一客戶群,考量客戶序列購買行為進行序列規則推薦,並且考量目標客戶於目前時期之已購買行為進行相似客戶之協同過濾推薦。實驗結果顯示混合式推薦方法優於其它推薦方法。
Customers’ purchase behavior may vary over time. Traditional Collaborative Filtering (CF) methods use similar customers’ purchase behavior to provide recommendations to the target customer, without considering customers’ purchase behavior over time. The sequential rule-based recommendation method mainly analyzes customers’ purchase behavior over time to extract sequential rules with the form: purchase behavior over past periods => purchase behavior at current period. If a target customer’s purchase behavior over past periods is similar to the conditional part of the rule, then the purchase behavior of the customer at current period is predicted to be the consequent part of the rule. Although the sequential rule method considers customers’ purchase sequences over time, it does not make use of the target customer’s purchase data at current period. This work proposes a novel hybrid recommendation method that combines sequential rule and CF methods. The proposed method uses customers’ RFM (Recency, Frequency, and Monetary) values to cluster customers into groups with similar RFM values. For each group of customers, sequential rules are extracted from purchase sequences of that group to make recommendations. In addition, a KNN-based CF method is adopted to provide recommendations based on the target customer’s purchase data at current period. The results of the two methods are combined to make final recommendations. The experimental result shows that the hybrid method performs better than other methods.
Abstract ii
1. Introduction 1
2. Literature Review 4
2.1 Customer Segmentation and RFM Evaluation 4
2.2 Clustering 5
2.2. Association Rules for Product Recommendation 6
2.3. Recommender System 7
2.3.1. Typical KNN-based Collaborative Filtering 8
2.3.2. Sequential Rule-based Recommendation 9
2.3.3. Content-based Filtering 12
2.3.4. Hybrid Approaches 12
3. Methodology 14
3.1. The Hybrid Recommendation Method 15
3.2. The Segmentation-based Sequential Rule Method 17
3.2.1. Customer Clustering 18
3.2.2. Transaction Clustering 21
3.2.3. Mining Customer Behavior 24
3.2.4. Similarity Computing 27
3.2.5. Recommendation of the Top-N Items 28
3.3. The KNN-based CF Method 29
4. Experiment and Evaluation 30
4.1. Data Collection 30
4.2. Experimental Setup 30
4.3. Evaluation Metrics 31
4.4. Experimental Results 32
4.4.1. The Segmentation-based Sequential Rule Recommendation 32
4.4.2. Comparison of Segmentation-based Sequential Rule Method and Sequential Rule-based Method 33
4.4.3. Evaluation of KNN-based CF Method 34
4.4.4. Evaluation of the Hybrid Method 37
4.5. Experimental Summary 38
5. Conclusions and Future Work 40
Reference 41
Agrawal, R., & Srikant, R.(1994), Fast algorithms for mining association rules, Proceedings of the 20th international conference on very large data bases, pp. 478-499.
Agrawal, R., Imielinski, T., & Swami, A. (1993), Mining association between sets of items in massive databases, Proceedings of the ACM-SIGMOD.
Bult, J.R. & Wansbeek, T.J. (1995), Optimal selection for direct mail, Marketing Science, 14(4), pp. 378–394.
Burke, R.D (2002), Hybrid recommender systems: survey and experiments, User Modeling and User-Adapted Interaction, 12, 4, pp. 331-370.
Chen, H.C. & Chen, A.L.P. (2001), A music recommendation system based on music data grouping and user interests, Proceedings of the ACM Conference on Information and Knowledge Management, pp. 231-238.
Cho, Y.B., Cho, Y.H. & Kim, S.H. (2005), Mining changes in customer buying nehavior for collaborative recommendations. Expert Systems with Application 28, pp.359-369.
Clatworthy, J., Buick, D., Hankins, M., Weinman, J., & Horne, R. (2005), The use and reporting of cluster analysis in health psychology: A review, British Journal of Health Psychology, 10, pp. 329-358.
Dibb, S. (1998), Market segmentation: strategies for success, Marketing Intelligence and Planning 16(7), pp.394-406.
Fix, E. & Hodges, J.L. (1951), Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties, Technical Report 4. USAF School of Aviation Medicine, Randolph Field, TX.
Flexer, A. (1999), On the use of Self-Organizing Maps for clustering and visualization, In Proceeding of the 3rd International European Conference PKDD 99, Prague, and Czech Republic.
Hawkes, V.A. (2000), The heart of the matter: The challenge of customer lifetime value, CRM Forum Resources, pp. 1-10.
Heyer, L.J., Kruglyak, S. & Yooseph, S. (1999), Exploring Expression Data: Identification and Analysis of Coexpressed Genes, Genome Research, 9, pp. 1106-1115.
Jianbo Shi & Jitendra Malik (2000), Normalized Cuts and Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), pp. 888-905.
Joachims, T. (1997), A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization, Proceedings of the 14th International Conference on Machine Learning (ICML).
Kamba, T., Bharat, K., & Albers, M.C. (1995), The Krakatoa Chronicle-an interactive personalized newspaper on the Web, Proceedings of the Fourth International World Wide Web Conference, pp. 11-14.
Konstan, J. A., Miller, B. N.,Maltz, D., Herlocker, J. L.,Gordon, L. R., & Riedl, J. (1997), GroupLens: Applying Collaborative Filtering to Usenet News, Communications of the ACM, 40(3), pp. 77–87.
Lang, K. (1995), Newsweeder:Learning to filter netnews, Proceedings of the Twelfth International Conference on Machine Learning, pp.331-339.
Li, Q., & Kim, B.M. (2003), An approach for combining content-based and collaborative filters, Proceedings of the 6th International Workshop on Information Retrieval with Asian Languages, pp. 17-24.
Liu, B., Hsu, W., Han, H.S., & Xia, Y. (2000), Mining Changes for Real-Life Applications, Second International Conference on Data Warehousing and Knowledge Discovery, Lecture Notes In Computer Science, 1874, pp. 337-346.
MacQueen, J. B.(1967), Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, pp. 281-297.
Marcus, C. (1998), A practical yet meaningful approach to customer segmentation. Journal of Consumer Marketing, 15(5), pp. 494-504.
Melville, P., Moony, R.J., & Nagarajan, R. (2002), Content-based collaborative filtering for improved recommendations, Proceedings of the Eighteenth National Conference on Artificial Intelligence, 2002, pp. 187-192.
Mooney, R., & Roy L., (2000), Content-Based Book Recommending Using Learning for Text Categorization, Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 195–204.
Nour, M.A., & Madey, G. R. (1996), Heurisitc and optimization approaches to extending the Kohonen self organizing algorithm, European Journal of Operational Research, 93(2), pp. 428-448.
Park, J. S., Chen, M. S., & Yu, P. S. (1995), An effective hash based algorithm for mining association rules, Proceedings of the ACM SIGMOD conference on management of data , pp. 175-186.
Punj, G.N., & Stewart, D.W. (1983), Cluster analysis in marketing research: review and suggestions for application, Journal of Marketing Research 20, pp.134-148.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. & Riedl, J. (1994), ‘GroupLens: An Open Architecture for collaborative Filtering of Netnews, Proceedings of the ACM Conference on Computer Supported Cooperative Work.
Richard O. Duda, Peter E. Hart, David G. Stork (2001), Pattern classification (2nd edition), Wiley, New York.
Rosset, S.,Neumann, E.,Eric, U., Vatinik, N., & Idan, Y. (2002), Customer lifetime value modeling and its use for customer retention planning, Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining, pp. 332-340.
Rucker, J., & Polanco, M.J. (1997), Personalized navigation for the Web, Communications of the ACM, 40(3), pp. 73-75.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. (1994), GroupLens: an open architecture for collaborative filtering of Netnews, In: Proceedings of the CSCW conference, pp. 175-186.
Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2000), Analysis of recommendation algorithms for e-commerce, In: Proceedings of the ACM conference (Electronic Commerce), pp. 158-167.
Schafer, J.B., Konstan, J.A., Riedl, J. (2001), E-commerce recommendation applications, Journal of Data Mining and Knowledge Discovery 5(1/2), pp.115-152.
Shardanand, U., & Maes, P. (1995), Social information filtering: algorithms for automating ‘world of mouth’. In: Proceedings of the ACM (CHI'95), pp. 210-217.
Srikant, R. & Agrawal, R. (1995). Mining generalized association rules. Proceedings
of the 21th international conference on very large data bases , pp.407-419.
Verhoef, P.C., & Donkers, B. (2001), Predicting customer potential value an application in the insurance industry. Decision Support Systems, 32, pp.189-199.
Vesanto, J., Alhoniemi, E. (2000), Clustering of self-organizing map. IEEE Transactions on Neural Networks 11, pp.586-600
Wang, K., Zhou, S., & Han, J. (2002), Profit Mining: From patterns to actions. Proceedings of EDBT, pp.70-87.
Cho, Y.B. , Cho, Y.H., Kim, S.H. (2005), Mining changes in customer buying behavior for collaborative recommendations. Expert Systems with Applications, 28,pp.359-369
Yun, C.H., Chung, K.T., & Chen, M.S. (2006), Adherence clustering:an efficient method for mining market-basket clusters, Information System, 31, pp. 170-186
Yu, Philips S. (1999), Data mining and personalization technologies. Proceedings of the sixth international conference on database system for advanced application. Hsinchu, Taiwan, pp.6-13.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top