跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王賢崙
研究生(外文):Hsien-Lun Wong
論文名稱:海運軸輻路網模式規劃貨櫃船航線之研究
論文名稱(外文):Analyses of Marine Hub-and-Spoke Network Models for Routing Containerships
指導教授:謝尚行謝尚行引用關係
指導教授(外文):Shang-Hsing Hsieh
學位類別:博士
校院名稱:國立交通大學
系所名稱:運輸科技與管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:軸輻路網軸心港位置問題集貨港指派貨櫃船航線最適貨櫃船型利潤最大化
外文關鍵詞:Hub-and-Spoke NetworkHub Location ProblemFeeder Port AssignmentContainership RoutingOptimal Containership sizeProfit Maximization
相關次數:
  • 被引用被引用:13
  • 點閱點閱:576
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本篇論文應用軸輻路網模式與架構,描述海運貨櫃船隊之航線規劃與型態,包括對軸心港位置問題、集貨港指派問題,及最適船型問題進行分析。對此議題,本文分析的角度,從軸輻路網介紹開始,如何適用於海運系統、最適船型分析、軸心港之條件與選擇、軸輻路網式航線設計、折扣係數模式、演算法應用,到實例說明結束。研究結果顯示,海運軸輻路網模式,能解決航線規劃問題,且能提供航商在軸輻路網航線設計之參考;其次,最適船型與船速模式,釐清船速對問題的影響性,並能提供航商在船舶航行之參考。本研究發現:(1)非完全路網、單一指派,及非嚴格路網是貨櫃船航線的特性,本文模式能納入這些特性,合適地表現出海運系統的全貌。(2)軸心港位置模式能描述航商對軸心港的選擇行為,集貨港指派模式反應出海運接駁的轉運特色。(3)軸輻路網航線規劃的步驟,是針對海運分析上必要而適切的,模式能決策出整體海運系統之最佳化航線。(4)本文另分析貨櫃船之最適船型與船速,以追求利潤最大化為目標,符合經濟學原理,較以往成本最小化模式,更能適切描述航商的決策行為。
This dissertation designs, develops, and implements two satisfactory models to approach the problems, including the hub location, feeder port allocation, and optimal containership size problems. First, a single assignment nonstrict hub location model (SANHL), with heuristic scheme based on the shortest distance rule, is formulated to solve the former two problems. An experimental case based on the Trans-Pacific Routes is presented to illustrate the SANHL model’s formulation and solution methods. The results indicate that the SANHL model is a concave function, exploiting the economies of scale for total profit with respect to the number of hubs. The spoke allocation may change an optimal choice of hub locations. Second, a nonlinear optimal ship size and speed model (NOS) seeking maximal profit is used to solve the containership size problem. An example of the Trans-Pacific Routes is employed to test the NOS model formulation and sensitivity analysis. The results indicate that the NOS model exploits the diseconomies of scale for total profit to the ship speed. This would provide shipowners with a beneficial reference for planning the size and the speed of their containerships. This dissertation contributes to an optimal marine network planning, hub choice behavior, feeder transshipment structure, and economic containership speed. Moreover, it provides new tools for decision makers, port operators and shipowners concerned with hub-and-spoke routing patterns and containership size development.
中文摘要……………………………………............................…..................……………..i
英文摘要………………………………………..................................................…………..ii
誌謝………………………………………………..........................................................…..iii
目錄………………………………………………..........................................................…..iv
圖目錄………………………………………….......................................................……….vi
表目錄……………………………………………...................................................…...…..vii
第一章 緒論
  1.1 研究動機與背景………………………………................……………………… P1
  1.2 問題特性………………………………………................……………………… P3
    1.2.1軸輻路網的型態與問題……………...............…………………………... P3
    1.2.2貨櫃船隊定期航線的特性與問題……….............…....…………………. P3
    1.2.3最適貨櫃船型(船舶大小)問題……….............…....……......……………. P6
  1.3 研究目的……………………………………..........…………….......…..………. P6
  1.4 研究範圍與限制…………………………………...............……………………. P7
  1.5 研究方法………………………………………………………................……… P7
  1.6 研究內容與流程………………………………………………......................….. P10
第二章 文獻回顧
  2.1 軸輻路網模式…………………………………………………................……… P12
    2.1.1基本模式與類型………………………………………...............………... P15
    2.1.3折扣係數………………………………………………................……….. P16
    2.1.4海運軸輻路網模式……………………………………................……….. P17
  2.2 船舶航線規劃模式………………………………………...................………… P17
  2.3 最適貨櫃船型模式………………………………………................…………… P19
  2.4 小結…………………………………………………………………................... P21
第三章 最適貨櫃船型與船速模式
  3.1 最適船型問題……………………………………………………................…… P23
  3.2 數學模式之構建…………………………………………………….....................P24
    3.2.1模式基本概念………………………………………………….................. P24
    3.2.2模式基本假設………………………………………………................….. P25
    3.2.3變數與參數說明…………………………………………...............………P25
3.2.4數學模式………………………………………………….................…..... P26
  3.3 模式求解說明…………………………………………………………................ P27
  3.4 運送成本與船型和船速之迴歸式分析………………………………................ P28
   3.4.1資金成本與船型和船速………………………………………...................... P29
    3.4.2燃油成本與船型和船速………….................……………………………. P31
    3.4.3營運成本與船型和船速……………………………………..................... P32
    3.4.4碇泊費用與船型……………………………………………….................. P34
  3.5 小結……………………………………………………….................……...…… P35
第四章 最適船型與船速模式之應用與測試
  4.1 利潤最大化模式求解………………………………………....................……… P36
  4.2 投資報酬率模式求解…………………………………………………................ P40
  4.3 敏感度分析………………………………………………………….................... P44
    4.3.1承載率變動分析……………………………………………….................. P44
    4.3.2碼頭工時變動分析…………………………………………….................. P45
    4.3.3港口變動分析…………………………………………………………….. P46
    4.3.4燃油價格變動分析……………………………………………………….. P48
  4.4 小結……………………………………………………………………………… P49
第五章 單一指派非嚴格型海運軸輻路網模式
  5.1 海運軸輻路網之問題背景……………………………………………………… P50
  5.2 軸輻路網航線規劃之問題特性分析…………………………………………… P51
  5.3 模式基本假設…………………………………………………………………… P52
  5.4 數學模式之構建………………………………………………………………… P53
    5.4.1軸心港位置模式………………………………………………………….. P53
    5.4.2集貨港指派模式………………………………………………………….. P57
  5.5 折扣係數模式…………………………………………………………………… P66
  5.6 模式求解步驟…………………………………………………………………… P67
  5.7 小結……………………………………………………………………………… P68
第六章 單一指派非嚴格海運軸輻路網模式之應用與測試
  6.1 實例背景說明…………………………………………………………………… P70
  6.2 軸心港位置模式求解…………………………………………………………… P71
  6.3 集貨港指派模式求解…………………………………………………………… P75
  6.4 敏感度分析……………………………………………………………………… P80
    6.4.1港口裝卸費與裝卸率變動分析………………………………………….. P80
    6.4.2承載率變動分析………………………………………………………….. P81
    6.4.3燃油價格變動分析……………………………………………………….. P82
  6.5 折扣係數模式求解……………………………………………………………… P83
  6.6 小結……………………………………………………………………………… P86
第七章 結論與建議
  7.1 研究結論………………………………………………………………………… P88
  7.2 未來研究方向…………………………………………………………………… P89
  7.3 研究貢獻………………………………………………………………………… P89
參考文獻……………………………………………………..……………………………. P91
附錄
簡歷

圖目錄

圖1-1 軸輻路網式海運定期貨櫃船隊之航線型態…………………………………….. P4
圖1-2 標準型之航空軸輻路網航線型態…………………………………….…………. P5
圖1-3 航線規劃問題與貨櫃船型問題關連圖……………………………….…………. P6
圖1-4 研究流程圖……………………….…………………………………….………… P11
圖2-1 貨櫃船型與單位運輸成本之關係…………………………………….…………. P20
圖3-1 資金成本與船型關係圖……………………………………….…………………. P30
圖3-2 資金成本與船速關係圖……………………………………............…………….. P30
圖3-3 燃油成本與船型關係圖………………………………………………………….. P31
圖3-4 燃油成本與船速關係圖………………………………………………………….. P32
圖3-5 營運成本與船型關係圖………………………………………………………….. P33
圖3-6 營運成本與船速關係圖………………………………………………………….. P34
圖4-1 船型固定下之最大利潤值與對應船速之變化圖…………………….…………. P38
圖4-2 船速固定下之最大利潤值與對應船型之變化圖…………………….…………. P39
圖4-3 包含船型與船速兩個變數之利潤值函數圖………………………….…………. P39
圖4-4 利潤函數相對於船型與船速之等高線圖…………………………….…………. P40
圖4-5 船型固定下之最高投資報酬率與對應船速之變化圖……………….…………. P41
圖4-6 船型固定下之最高投資報酬率與對應船型之變化圖……………….…………. P43
圖4-7 包含船型與船速變數之投資報酬率函數圖………………………….…………. P43
圖4-8 最高投資報酬率函數相對於船型與船速之等高線圖………………………….. P44
圖4-9 不同港口距離與最適船型和船速之變化圖………………………….…………. P47
圖4-10 不同燃油價格與最適船型和船速……………………………………………… P48
圖5-1 海運軸輻路網式貨櫃船定期航線示意圖…………………………….…………. P53
圖5-2 海運軸輻路網模式二階段求解流程圖…………………………….……………. P68
圖6-1 包含軸心港位置模式與集貨港模式之總目標值變化圖……………………….. P79
圖6-2 越太平洋航線之最佳軸輻路綱式貨櫃船定期航線圖……………….…………. P79










表目錄

表2-1 軸心港位置問題與貨櫃船定線問題之基本差異…………………….…………. P22
表3-1 主要成本與船型和船速迴歸式之彈性值…………………………….…………. P34
表4-1 高雄-洛杉磯航線基本資料………………………………………………………. P36
表4-2 船型固定下之最大利潤與其對應船速………………………………………….. P37
表4-3 船速固定下之最大利潤與其對應船型……………………………….…………. P38
表4-4 船型固定下的最高投資報酬率與其對應之船速…………………….…………. P41
表4-5 船速固定下的最高投資報酬率與其對應之船型…………………….…………. P42
表4-6 高雄-東京承載率之敏感度分析…………………………………………………. P45
表4-7 高雄-洛杉磯每日碼頭工時之敏感度分析………………………………………. P45
表4-8 選定港口與高雄港的距離…………………………………………….…………. P46
表4-9 選定港口的貨櫃裝卸效率與裝卸費………………………………….…………. P46
表4-10 各港口之間的每櫃運價矩陣…………………………………………………… P47
表4-11 港口距離之敏感度分析………………………………………………………… P47
表4-12 高雄-東京燃油價格之敏感度分析……………………………………………... P48
表5-1 支線在迴圈、依序往返,與直達航線之貨物承載量……………….…………. P58
表5-2 不同集貨港數目下支線路網組合型態……………………………….…………. P59
表6-1 越太平洋航線主要貨櫃港在世界排名……………………………….…………. P71
表6-2 設置2個軸心港之軸心港位置模式求解目標值排序………………………….. P72
表6-3 設置3個軸心港之軸心港位置模式求解目標值排序………………………….. P72
表6-4 設置4個軸心港之軸心港位置模式求解目標值排序………………………….. P72
表6-5 設置5個軸心港之軸心港位置模式求解目標值排序………………………….. P73
表6-6 設置6個軸心港之軸心港位置模式求解目標值排序………………………….. P73
表6-7 設置7個軸心港之軸心港位置模式求解目標值排序………………………….. P73
表6-8 設置8個軸心港之軸心港位置模式求解目標值排序………………………….. P74
表6-9 設置9個軸心港之軸心港位置模式求解目標值排序………………………….. P74
表6-10 軸心港位置模式求解各組最大目標值的排序………………………………… P74
表6-11 設置4個軸心港之集貨港指派模式求解目標值排序………………………… P75
表6-12 設置5個軸心港之集貨港指派模式求解目標值排序………………………… P76
表6-13 設置6個軸心港之集貨港指派模式求解目標值排序………………………… P76
表6-14 設置7個軸心港之集貨港指派模式求解目標值排序………………………… P76
表6-15 設置8個軸心港之集貨港指派模式求解目標值排序………………………… P77
表6-16 集貨港指派模式之各組最大目標值………………………………………….... P77
表6-17 實例之單一指派非嚴格海運軸輻路網模式各組最大目標值………………… P77
表6-18 上海港裝卸費及碇泊費變動之敏感度分析…………………………………… P81
表6-19 承載率變動對軸心港位置模式之敏感度分析…………………….…………... P82
表6-20 燃油價格變動對軸心港位置模式之敏感度分析……………………………… P83
表6-21 主要測試港口之相關資料………………………………………….…………... P84
表6-22 不同貨櫃船型之船舶規格表……………………………………….…………... P84
表6-23 香港與高雄港間之折扣係數值…………………………………….…………... P84
表6-24 香港與洛杉磯兩港間之折扣係數值……………………………….…………... P85
表6-25 香港-高雄港承載率變化之折扣係數值………………………………………... P85
參考文獻
1. 王賢崙、許惠淑, 「軸輻路網折扣係數之經濟效益分析」,第7屆中小企業管理研討會,國立中正大學企業管理研究所,頁382-391,民國95年。
2. 宋彣俊,「以利潤最大化為目標之貨櫃船定線模式」,國立交通大學運輸科技與管理研究所碩士論文,民國91年。
3. 林永山,「我國定期航線運量分析與船隊最適規模研究」,國立台灣海洋大學航運管理學系碩士論文,民國86年。
4. 吳偉銘,「國籍貨櫃航商船舶大型化之績效研究」,航運季刊,第11卷3期,頁51-62,民國91年。
5. 吳偉銘、范迪蔚,「貨櫃船舶大型化對海運市場之影響—以國際貨櫃航商為例」,航運季刊,第10卷3期,頁1-14,民國90年。
6. 許巧鶯、謝幼屏,「貨櫃海運航線之船型與頻次決策研究」,中華民國運輸92年年會暨第18屆學術論文研討會。
7. 陳冠州,「貨櫃船隊經濟配置與經營計畫最佳調配之研究」,國立成功大學交通管理科學研究所碩士論文,民國75年6月。
8. 陳春益、張永昌,「航商選擇定期貨櫃航線泊靠港之探討」,國家科學委員會研究彙刊:人文及社會科學,第7卷3期,頁438-444,民國86年。
9. 陳春益、邱明琦,「貨櫃航線路網設計模式之研究」,運輸計劃季刊,第31卷2期,頁267-298,民國91年。
10. 高橋宏直,日本港灣協會港灣雜誌,第73卷5期,民國85年。
11. 郭重佑,「以利潤最大化為目標之最適貨櫃船型模式之研究」,國立交通大學運輸科技與管理研究所碩士論文,民國92年。
12. 彭信坤,「貨櫃船隊船型配置及航線選擇方案之研究」,國立成功大學交通管理科學研究所碩士論文,民國71年。
13. 董孝行,「貨櫃船最適船型之研究」,運輸計劃季刊,第15卷3期,頁435- 459,民國75年。
14. 盧華安,「定期貨櫃航線設計之研究」,運輸計劃季刊,第31卷1期,頁121-142,民國91年。
15. 盧華安、徐育彰,「定期貨櫃航線選擇與船隊部署之研究」,運輸計劃季刊,第30卷3期,頁577-602,民國90年。
16. 謝尚行、王賢崙,「貨櫃船最適船型的理論與實務探討」,中華民國運輸學會89年年會暨第15屆學術論文研討會,頁755-764,民國90年。
17. 謝尚行、王賢崙,「最適貨櫃船型與船速之非線性規劃模式」,運輸學刊,第8卷1期,頁1-26,民國95年。
18. 謝尚行、王賢崙、宋彣俊,「以利潤最大化為目標之貨櫃船隊定線模式」,中華民國運輸學會91年年會暨第17屆學術論文研討會,頁95-104,民國91年。
19. 謝尚行、游至誠、王賢崙,「允許集貨港與軸心港不直接相連之海運軸路網模式」,中華民國運輸學會90年年會暨第16屆學術論文研討會,頁891-899,民國90年。
20. 謝尚行、張斐茹,「軸輻路網模式在國際定期貨櫃船航線之應用」,運輸計劃季刊,第30卷4期,頁871-890,民國90年。
21. 交通部運輸研究所,台灣地區發展空運中心之可行性研究,民國86年。
22. Aykin, T., “On a Quadratic Integer Program for the Location of Interacting Hub Facilities,” European Journal of Operational Research 46, pp. 409-411 (1990).
23. Aykin, T., “Lagrangean Relaxation Based Approaches to Capacitated Hub-and-Spoke Network Design Problem,” European Journal of Operational Research 79, pp. 501-523 (1994).
24. Aykin, T., “Networking Policies for Hub-and-Spoke Systems with Applications to the Air Transportation System,” Transportation Science 29, pp. 201-221 (1995).
25. Azaron, A. and Kianfar, F., “Dynamic Shortest Path in Stochastic Dynamic Network: Ship Routing Problem,” European Journal of Operational Research 144, pp. 138-156 (2003).
26. Bradley, S. P., Hax, A. C. & Magnanti, T. L., “Planning the Mission and Composition of the U.S. Merchant Marine Fleet,” Applied Mathematical Programming, Addision-Publishing Company, 1977.
27. Boland, N., Krishnamoorthy, M., Ernst, A.T., and Ebery, J., “Preprocessing and Cutting for Multiple Allocation Hub Location Problems,” European Journal of Operational Research 155, pp. 638-653 (2004).
28. Buxton, I.L., “Fuel Costs and Their Relationship with Capital and Operating Costs,” Maritime Policy and Management, Vol.12, No.1, pp. 47-54. (1985)
29. Bryan, D.L. and O’Kelly, M.E., “Hub-and-Spoke Network in Air Transportation: An Analytical Review,” Journal of Regional Science 39(2), pp. 275-295 (1999).
30. Campbell, J.F., “Integer Programming Formulations of Discrete Hub Location Problems,” European Journal of Operational Research 72, pp. 387-405 (1994).
31. Campbell, J.F., “Hub Location Problems and the p-Hub Median Problem,” Operations Research 44, pp. 923-935 (1996).
32. Chadwin, M.L., Pope, J.A., and Talley, W.K., Ocean Container Transportation: An Operational Perspective. New York: Taylor and Francis, Inc (1990).
33. Cho, S.C. and Perakis, A.N., “Optimal Liner Fleet Routing Strategies,” Maritime Policy and Management 23(3), pp. 249-259 (1996).
34. Christiansen, M. and Nygreen, B., “A Method for Solving Routing Problems with Inventory Constraints,” Annals of Operations Research 81, pp. 357-378 (1998).
35. Chu, C.W., Kuo, T.C., and Shieh, J.C., “A Mixed Integer Programming Model for Routing Containerships,” Journal of Marine Science and Technology 11(2), pp. 96-103 (2003).
36. Containerisation International Yearbook (1999~2005), London: Informa UK Ltd.
37. Cullinane K. and Khanna M., “Economies of Scale in Large Container Ships,” Journal of Transport Economics and Policy Vol.33, Part 2, pp.185-208, 1999.
38. Drewry Shipping Consultants (1995), Multi-Purpose Cargo Ships-London, Drewry Shipping Consultants.
39. Ebery, J., Krishnamoorthy, M., Ernst, A. T., and Boland, N., “The Capacitated Multiple Allocation Hub Location Problem: Formulations and Algorithms,” European Journal of Operational Research 120, pp. 614-631 (2000).
40. Ernst, A.T. and Krishnamoorthy, M., “Efficient Algorithms for the Uncapacitated Single Allocation p-Hub Median Problem,” Location Science 4, pp. 139-154 (1996).
41. Ernst, A.T. and Krishnamoorthy, M., “Exact and Heuristic Algorithms for the Uncapacitated Multiple Allocation p-Hub Median Problem,” European Journal of Operational Research 104, pp. 100-112 (1998).
42. Fagerholt K., “Optimal Fleet Design in a Ship Routing Problem,” International Transactions in Operational Research 6, pp.453-463 (1999).
43. Flynn, J and S. Ratick., “A Multiobjective Hierarchical Covering Model for the Essential Air Services Program,” Transportation Science, 22, pp.139-147 (1988).
44. Gilman, S., Container Logistics and Terminal Design. Washington, DC: International Bank for Reconstruction and Development (1981).
45. Hsieh, S.H. and H. L. Wong, “A Marine Hub-and-Spoke Network Model Allowing the Feeder Ports Not to Directly Connect to Hub Ports,” Paper Presented at the Transportation Research Board Annual (TRB) 82nd Meeting, National Research Council, Washington, DC (2003).
46. Hsieh, S. H. and H. L. Wong, “The Marine Single Assignment Nonstrict Hub location Problem: Formulation and Experimental Examples,” Journal of Marine Science and Technology 12, pp. 343-353 (2004).
47. Hsieh, S. H. and H. L. Wong, “The Effect of Feeder Route Arrangement to Interhub Linkage in Marine Hub-and-Spoke Networks,” WSEAS TRANSACTIONS on Business and Economics 3, pp.163-168 (2006).
48. Hsu, C. I. and Y. P. Hsieh, “Direct Versus Terminal Routing on a Marine Hub-and-Spoke Container Network,” Journal of Marine Science and Technology 13, pp. 209-217 (2005).
49. Jansson, J. O. and Shneerson, D., “The Optimal Ship Size,” Journal of Transport Economics and Policy, Vol. 16, No. 3, pp. 217-38 (1982).
50. Jansson, J. O. and Shneerson, D., “A Model of Scheduled Liner Freight Services: Balancing Inventory Cost against Ship Owner’s Costs,” The Logistics and Transportation Review, Vol. 21, No. 3, pp. 195-215 (1985).
51. Jaramillo, D.I. and Perakis, A.N., “Fleet Deployment Optimization for Liner Shipping. Part 1: Background, Problem Formulation and Solution Approaches,” Maritime Policy and Management 18, pp. 183-200 (1991).
52. Jeng, C.Y., “Routing Strategies for an Idealized Airline Network,” Ph.D. dissertation, University of California-Berkeley (1987).
53. Kara, B.Y. and Tansel, B.C., “On the Single-Assignment p-Hub Center Problem,” European Journal of Operational Research 125, pp. 648-655 (2000).
54. Kara, B.Y. and Tansel, B.C., “The Single-Assignment Hub Covering Problem: Models and Linearizations,” Journal of Operational Research Society 54, pp. 59-64 (2003).
55. Klincewicz, J.G., “Heuristics for the p-Hub Location Problem,” European Journal of Operational Research 53, pp. 25-37 (1991).
56. Klincewicz, J.G., “Avoiding Local Optima in the p-Hub Location Problem Using Tabu Search and Grasp,” Annals of Operations Research 40, pp. 283-302 (1992).
57. Klincewicz, J.G., “A Dual Algorithm for the Uncapacitated Hub Location Problem,” Location Science 4, pp. 173-184 (1996).
58. Kuby, M.J. and R, Gray, “The Hub Network Design Problem with Stopovers and Feeder: The case of federal Express,” Transportation Research A, 27, pp.1-12 (1993).
59. Lane, D.E., Heaver, T. D. and Uyeno. D., Planning and Scheduling for Efficiency in Liner Shipping, Networks, 1981.
60. Lim, S.D., “Economies of Container Ship Size: A New Evaluation,” Maritime Policy and Management, Vol.21, No.2, pp.149-160 (1994).
61. Lloyd’s Shipping Economist (2002), Informa Maritime & Transport, London, UK.
62. Lu, H.A., “Modelling Ship’s Routing Bounded by the Cycle Time for Marine Liner,” Journal of Marine Science and Technology 10(1), pp. 61-67 (2002).
63. McLellan, R.G. “Bigger Vessel: How big is Bigger?” Maritime Policy and Management, Vol.24, No.2, pp.193-211 (1997).
64. Mourao, M.C., Pato, M.V., and Paixao, A.C., “Ship Assignment with Hub-and-Spoke Constraints,” Maritime Policy and Management 29 (2), pp. 135-150 (2002).
65. O’Kelly, M.E., “Hub Facility Location with Fixed Costs,” Journal of Regional Science 71(3), pp. 293-306 (1992).
66. O’Kelly, M.E., Skorin-Kapov, D., and Skorin-Kapov J., “Lower Bounds for the Hub Location Problem,” Management Science 41(4), pp. 713-721 (1995).
67. O’Kelly, M.E., Bryan, D.L., Skorin-Kapov, D., and Skorin-Kapov J., “Hub Network Design with Single and Multiple Allocations: A Computational Study,” Location Science 4(3), pp. 125-138 (1996).
68. O’Kelly, M.E. and Miller, H.J., “The Hub Network Design Problem: a Review and Synthesis,” Journal of Transport Geography 2(1), pp. 31-40 (1994).
69. Olson, C. A., Sorenson, E. E. and Sullivan, W. J., Medium Range Scheduling for a Freighter Fleet. Operations Research, 17, 565-582, 1969.
70. Pamuk, F.S. and Sepil, C., “A Solution to the Hub Center Problem via a Single-Relocation Algorithm with Tabu Search,” IIE Transactions 33, pp. 399-411(2001).
71. Parker, R.G. and Rardin, R.L., “An Overview of Complexity Theory in Discrete Optimizations: Part I. Concepts,” IIE Transactions 14 (1), pp. 3-10 (1982a).
72. Parker, R.G. and Rardin, R.L., “An Overview of Complexity Theory in Discrete Optimizations: Part II. Results and Implications,” IIE Transactions 14 (2), pp. 83- 89 (1982b).
73. Rana, K. and Vickson, R.G., “A Model and Solution Algorithm for Optimal Routing of A Time-Charted Containership,” Transportation Science 22, pp. 83-95 (1988)
74. Rana, K. and Vickson, R.G., “Routing Containerships Using Lagrangian Relaxation and Decomposition,” Transportation Science 25, pp. 201-214 (1991).
75. Robin, R., “Asian Hub/Feeder Nets: the Dynamics of Restructing,” Maritime Policy and Management 25 (1), pp. 83-95 (1998).
76. Ronen, D., “Ship Scheduling: The Last Decade,” European Journal of Operational Research 71, pp. 325-333 (1993).
77. Skorin-Kapov, D. and Skorin-Kapov, J., “On Tabu Search for the Location of Interacting Hub Facilities,” European Journal of Operational Research 73, pp. 502-509 (1994).
78. Skorin-Kapov, D., Skorin-Kapov, J., and O’Kelly, M. E., “Tight Liner Programming Relaxations of Uncapacitated p-Hub Median Problems,” European Journal of Operational Research 94, pp. 582-593 (1996).
79. Sohn, J. and Park, S., “A Linear Program for the Two-Hub Location Problem,” European Journal of Operational Research 100, pp. 617-622 (1997).
80. Sohn, J. and Park, S., “Efficient Solution Procedure and Reduced Size Formulations for p-Hub Location Problems,” European Journal of Operational Research 108, pp. 118-126 (1998).
81. Talley, W.K., “Optimal Containership Size,” Maritime Policy and Management, Vol.17, No3, pp165-175 (1990).
82. Viton, P. A. (1981), “A Translog Cost Function for Urban Bus Transit,” Journal of Industrial Economics, Vol. 29, No. 3, pp. 287-304.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top