跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家忠
研究生(外文):C. C. Chen
論文名稱:高頻被動元件在矽基板和多層介電質基板之模型與特性
論文名稱(外文):The Characteristics and Models of High Frequency Passive Devices on Silicon and PCB Substrates
指導教授:荊鳳德
指導教授(外文):Albert Chin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:102
中文關鍵詞:高頻被動元件矽基板多層介電質基板
外文關鍵詞:High Frequency Passive DevicesSilicon substratePCB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:563
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
隨著行動無線通訊系統需求日益增加,對高性能、低成本、低功率、以及小體積之射頻/微波電路之需要更顯得迫切。由於現今積體化之CMOS晶片不斷地微縮化,使得主動元件可震盪頻率不斷地提高,若再能結合高性能化的高頻被動元件,會使得CMOS矽製程儼然成為可應用於射頻/微波領域的半導體技術之一,故改善高頻被動元件特性為其研究之重點。
然而,CMOS製程所使用之標準低阻值矽基板 (conductivity ~10 �プmhic-cm) 而言,其上的傳輸線以及被動元件皆有著相當高的訊號損失。這些損失不但造成元件本身特性變差,更會破壞CMOS射頻/微波電路的效能。這些低性能的被動元件,正是目前CMOS射頻/微波電路最大的致命傷之一。因此,如何克服此問題,對未來CMOS射頻/微波電路的研究與發展將有著關鍵性的影響。
本論文中首先採用高阻值的矽基板,來降低其上元件之訊號在基板中的損耗,進而提升射頻/微波性能及改善CMOS射頻/微波電路系統之特性,並能使用3D之技術能來整合被動元件在同一晶片中,也是最終之目的。此外,也針對在多層介電板中之高頻被動元件,利用半導體之製程技術來改善其高頻特性,因為現今高頻被動元件都仍外掛於晶片外中在印刷電路板中,改善其元件效能,也是本篇聚焦之貢獻。
本論文以射頻/微波電路中最常見之收發器 (transceiver) 電路出發,架構分別為:高頻被動元件在矽基板之研究; 高頻被動元件在多層介電板之研究;傳輸線在晶片中損耗的影響; 及結合3D技術整合微波被動元件四方面來探討。包括:共平面 (CoPlanar Waveguide, CPW) 傳輸線、 微波帶通 (band-pass); 分散式 (distributed) 濾波器,耦合器(Couplers)元件等等;最後亦探討了晶片內之傳輸和整合被動元件於晶片系統中。研究內容主要在於基板阻值對元件特性的影響,包括功率耗損、頻寬的延伸、能量的傳輸,和低耗損的共振。最後,仍朝著結合這些被動元件於收發器電路中,作出高性能高度整合之CMOS收發器為目標來邁進。
As mobile microwave communication development increases, high performance, low-cost, low power, small size RF integrated circuits (RFICs) are required. This is because the maximum oscillation frequency increases as down-scaling CMOS technology (for 90 nm RF CMOS). However, transmission lines and passive circuit components on standard low-resistivity silicon substrates such as those used in CMOS processing have high power loss, which degrade the characteristics of devices and further damage the performance of CMOS RF/Microwave circuits. To overcome this problem, we have developed a method of high resisvity silicon substrate technology, which is capable of converting the standard low-resistivity Si to high-resistivity for large substrate loss improvement with full VLSI technology process compatibility.
In this work, we have applied the high-resistivity Silicon substrate to almost all of the passive components used in a common transceiver on Si, including: coplanar waveguide (CPW) transmission lines, resonators, microwave band-pass distributed filters and couplers. In addition, the standard VLSI process is used to improve RF characteristics on high frequency printed circuit board (PCB) passive devices. The superior RF characteristics of extending bandwidth, lower insertion loss, and high coupling correspond with advanced wireless system demands. Hence, we have successfully demonstrated the excellent characteristics of RF passive devices on both silicon substrate and printed circuit board by decreasing power and coupling losses. Moreover, with the development of three dimensional technology, combing with interconnects and high resistivity substrate, these passive devices on standard VLSI process have been embedded into ICs. These device characteristics on silicon or PCB substrates, such as measured power loss, bandwidths, return loss, and insertion loss and coupling effect have presented in whole chapters. These enhanced RF performance methods on RF passive devices can contribute to applications in the advanced wireless systems.
ABSTRACT i
ACKNOWLEDGMENTS vi
CONTENTS viii
FIGURE CAPTIONS xii
TABLE CAPTIONS xxiii
CHAPTER 1 INTRODUCTION 1
1.1 Si Substrate for RF CMOS Technology 1
1.2 PCB Substrate for High-Speed Circuit 4
1.2.1 Printed Circuit Board Substrate 4
1.2.2 PCB Process Limitation 5
1.3 Backend Interconnect and Integrated with 3D 7
CHAPTER 2 Transmission Lines and Ring
resonators 9
2.1 Bulk and Thin-Film Microstrip Transmission Lines on
VLSI-Standard Si Substrates 9
2.1.1 Motivation 9
2.1.2 Bulk Microstrip Lines on Si 10
2.1.3 Thin-film Microstrip Lines on Si 11
2.1.4 Experimental Procedure 11
2.1.5 Conclusion 12
2.2 CPW and Microstrip Ring Resonators on Silicon
Substrates 14
2.2.1 Motivation 14
2.2.2 Design Process 15
2.2.3 Experimental Results 16
2.3 Modeling and Mechanisms 18
2.3.1 Analysis from Modeling 18
2.4 Conclusions 21
CHAPTER 3 Microwave Filters and Couplers 32
3.1 Microwave Band-Pass Filters on PCB 32
3.1.1 Motivation 32
3.1.2 Filter Design and Fabrication 33
3.1.3 Results and Discussion 36
3.1.4 Conclusions 37
3.2 Microwave Couplers on PCB 38
3.2.1 Motivation 38
3.2.2 Filter Design and Fabrication 39
3.2.3 Results and Discussion 40
3.2.4 Conclusions 42
3.3 Conclusions 43
CHAPTER 4 Coupling and dynamic power
losses in VLSI interconnects 52
4.1. AC Power Loss and Signal Coupling 52
4.1.1 Motivation 52
4.1.2 Experimental Procedure 53
4.2 1-Poly-1-Metal 0.18-µm Si MOSFETs 55
4.2.1 Results and Discussion 55
4.3 1-Poly-6-Metal 0.18-µm Si MOSFETs 57
4.3.1 Results and Discussion 57
4.3.2 Signal Coupling loss and Power Loss 57
4.4 Conclusions 59
CHAPTER 5 Band-Pass Filter on 3D VLSI 69
5.1 Band-Pass Filter Using VLSI Backend Interconnects 69
5.1.1 Motivation 69
5.1.2 Filter Design and Fabrication 70
5.1.3 Results and Discussion 71
5.1.4 Equivalent Circuit Model 72
5.1.5 Conclusions 74
CHAPTER 6 CONCLUSIONS AND FUTURE
WORKS 83
6.1 Conclusions 83
6.2 Future Works 85
REFERENCES 86
VITA 99
PUBLICATION LISTS 100
[1.1.1] L. E. Larson, “Integrated circuit technology options for RFIC’s? Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, 1998, pp. 387-399.
[1.1.2] K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, “High Q inductors for wireless applications in a complementary silicon bipolar process”, IEEE J. Solid-State Circuits, vol. 31, 1996, pp. 4-9.
[1.1.3] J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, and Y. H. Kwark, “Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates,” IEEE Trans. Microwave Theory Tech, vol. 45, 1997, pp. 1961-1968.
[1.1.4] J. P. Raskin, A. Viviani, D. Flandre and J.-P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Trans. Electron Devices, vol. 44, 1997, pp. 2252-2261.
[1.1.5] J.-B. Yoon, B.-K. Kim, C.-H. Han, E. Yoon, and C.-K. Kim, “Surface micromachined solenoid on-Si and on-glass inductors for RF applications,” IEEE Electron Device Lett., vol. 20, 1999, pp. 487-489.
[1.1.6] R. F. Drayton, R. M. Henderson, and L. P. B. Katehi, “ Monolithic packaging concepts for high isolation in circuits and antennas,“ IEEE Trans. Microwave Theory Tech., vol. 46, 1998, pp. 900-906.
[1.1.7] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh, “Millimeter-wave silicon MMIC interconnect and coupler using multilayer polymide technology,” IEEE Trans. Microwave Theory Tech., vol. 48, 2000, pp. 1482-1487.
[1.1.8] M. Marso, M. Wolter, R. Arens-Fischer, P. Kordos, and H. Luth, “Formation of laterally displaced porous silicon filters using different fabrication methods,” in IEEE Advanced Semiconductor Devices and Microsystems Dig., 2000, pp, 95-98.
[1.1.9] M. F. Chang, Y. Qian, P. Ma, and T. Itoh, “Silicon/metal polymide (SIMPOL) interconnects for broadband mixed signal silicon MMICs,” Electronics Lett., vol. 34, 1998, pp. 1670-1671.
[1.2.1] Ling Yun, “On current carrying capacities of PCB traces,” Electronic Components and Technology Conference, Proceedings. May 2002, pp.1683-1693.
[1.2.2] E. Waffenschmidt, B. Ackermann, J.A. Ferreira,”Design method and material technologies for passives in printed circuit Board Embedded circuits” IEEE Transactions on Power Electronics, Vol. 20, Issue 3, May 2005, pp. 576 – 584.
[1.2.3] S. Hata, “Vision systems for PCB manufacturing in Japan,” 16th Annual Conference of IEEE Industrial Electronics Society, vol.1. 1990, pp. 792 – 797.
[1.2.4] A. R. Hidde, A. Gierse, ”An AI-based manufacturing design rule checker and path optimizer for PCB production preparation and manufacturing” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, B, C] Vol. 15, Issue 3, June 1992, pp. 299 – 305.
[1.2.5] Jun So Pak, Jingook Kim, Jung-Gun Byun, Heejae Lee, Joungho Kim,”Coupling of through-hole signal via to power/ground resonance and excitation of edge radiation in multi-layer PCB” IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, ,2003, pp. 231 – 235.
[1.2.6] E. K.W. Gan, H.Y. Zheng, G.. C. Lim,”Laser drilling of micro-vias in PCB substrates,” Proceedings of Electronics Packaging Technology Conference, 2000, pp.321 – 326.
[1.2.7] G. Smithson,” Practical RF printed circuit board design,” IEE Training Course 5. How to Design RF Circuits, pp. 11/1 - 11/6, 2000.
[1.3.1] D. S. Yu, Albert Chin, C. C. Laio, C. F. Lee, C. F. Cheng, W. J. Chen, C. Zhu, M.-F. Li, W. J. Yoo, S. P. McAlister, and D. L. Kwong, “3D GOI CMOSFETs with Novel IrO2(Hf) Dual Gates and High-k Dielectric on 1P6M-0.18 �慆-CMOS,” in IEDM Tech. Dig., 2004, pp. 181-184.
[1.3.2] J. W. Joyner, P. Z. Ha, J. D. Meindl, "Global interconnect design in a three-dimensional system-on-a-chip." IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 12, Issue 4 , 2004, pp.367 – 372.
[2.1.1] B. Yu, H. Wang, A. Joshi, Q. Xiang, E. Ibok, M.-R. Lin, 15nm gate length planar CMOS transistor, International Electron Devices Meeting (IEDM) Tech Dig, 2001, pp. 937-939.
[2.1.2] T. Ohguro, K. Kojima, H. S. Momose, S. Nitta, T. Fukuda, T. Enda, and Y. Toyoshima, Improvement of high resistivity substrate for future mixed analog-digital application, VLSI Tech Symp Dig., pp. 158-159. 2002.
[2.1.3] E. C. Park, S. H. Baek, T. S. Song, J. B. Yoon, and E. Yoon, Performance Comparison of 5GHz VCOs Integrated by CMOS Compatible High Q MEMS Inductors, IEEE MTT-S Int Microwave Symp Dig, 2003, pp. 721-724.
[2.1.4] A. Chin, K. Lee, B. C. Lin, and S. Horng, Picosecond photoresponse of carriers in Si ion-implanted Si, Appl Phys Lett. vol.69, 1996, pp. 653-656.
[2.1.5] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, S. C. Pai, C. C. Chi, and C. P. Liao, RF loss and cross talk on extremely high resistivity (10K-1��-cm) Si fabricated by ion implantation, IEEE MTT-S Int Microwave Symp Dig., 2000, pp. 241-244.
[2.1.6] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, Transmission line noise from standard and proton-implanted Si, IEEE MTT-S Int Microwave Symp Dig., 2001, pp. 763-766.
[2.1.7] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, Integrated Antennas on Si, Proton-Implanted Si and Si-on-Quartz, International Electron Devices Meeting (IEDM) Tech Dig., 2001, pp. 903-906.
[2.1.8] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, V. Liang, J. K. Chen, S. C. Chien, D. S. Duh, and W. J. Lin, Low RF loss and noise of transmission lines on Si substrates using an improved ion implantation process, IEEE MTT-S Int Microwave Symp Dig., Vol. 2, 2003, pp. 963-966.
[2.1.9] K. T. Chan, A. Chin, J. T. Kuo, C. Y. Chang, D. S. Duh, W. J. Lin, C. X. Zhu, M. F. Li, and D. L. Kwong, “Microwave Coplanar Filters on Si Substrates, IEEE MTT-S Int Microwave Symp Dig., vol. 3, 2003, pp. 1909-1912.
[2.2.1] K. Chang, Microwave ring circuits and antennas, New York: John Wiley & Sons, 1996.
[2.2.2] L. Zhu, and K. Wu, A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits, IEEE Trans Microwave Theory Tech., (1999), vol. 47, No. 10, 1938-1948.
[2.2.3] H. Yabuki, M. Sagawa, M. Matsuo, and M. Makimoto, Stripline dual-mode ring resonators and their application to microwave devices, IEEE Trans. Microwave Theory Tech., (1996), Vol. 44, No. 5, 723 -729.
[2.2.4] T. Ohguro, K. Kojima, H. S. Momose, S. Nitta, T. Fukuda, T. Enda, and Y. Toyoshima, Improvement of high resistivity substrate for future mixed analog-digital application, VLSI Tech Symp Dig., 2002, pp. 158-159.
[2.2.5] E. C. Park, S. H. Baek, T. S. Song, J. B. Yoon, and E. Yoon, Performance comparison of 5GHz VCOs integrated by CMOS compatible high Q MEMS inductors, IEEE MTT-S Int Microwave Symp Dig., 2003, pp. 721-724.
[2.2.6] K. T. Chan, A. Chin, J. T. Kuo, C. Y. Chang, D. S. Duh, W. J. Lin, C. X. Zhu, M. F. Li, and D. L. Kwong, Microwave coplanar filters on Si substrates, IEEE MTT-S Int Microwave Symp., 2003, pp. 1909-1912.
[2.2.7] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, Transmission line noise from standard and proton-implanted Si, IEEE MTT-S Int Microwave Symp. Dig., 2001, pp. 763-766.
[2.2.8] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, Integrated antennas on Si, proton-implanted Si and Si-on-quartz, Int Electron Devices Meeting (IEDM) Tech. Dig., 2001, pp. 903-906.
[3.1.1] T. Edwards, Foundations for Microstrip Circuits Design, New York: John Wiley & Sons, 2nd Ed., chap. 5. (1992)
[3.1.2] J.-T. Kuo and E. Shih, Wideband band-pass filter design with three-line microstrip structures, Int’l Microwave Symp. Dig., Phoenix, Arizona, USA, 2001.
[3.1.3] G. L. Mattaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures. Norwood, MA: Artech House, 1980.
[3.1.4] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines. Norwood, MA: Artech House, 1979, chap. 3.
[3.1.5] D. M. Pozar, Microwave Engineering, New York: John Wiley & Sons, 2nd Ed., 1998, chap. 8.
[3.1.6] M. Velazquez-Ahumada, J. Martel, F. Medina, Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and enhanced coupling, IEEE Trans. Microwave Theory Tech.52, 2004, pp. 1082-1086.
[3.1.7] K. Chang, Microwave ring circuits and antennas, New York: John Wiley & Sons, 1996.
[3.1.8] A. Chin, K. T. Chan, H. C. Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M.-F. Li, S. P. McAlister and D. L. Kwong, RF Passive devices on Si with excellent performance close to ideal devices designed by electromagnetic simulation, Int’l Electron Devices Meeting (IEDM) Tech. Dig., 2003, pp. 375.
[3.1.9] K. T. Chan, A. Chin, J. T. Kuo, C. Y. Chang, D. S. Duh, W. J. Lin, C. X. Zhu, M. F. Li, and D. L. Kwong, Microwave Coplanar Filters on Si Substrates, IEEE MTT-S Int’l Microwave Symp. Dig., 2003, pp. 1909-1912.
[3.1.10] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, S. C. Pai, C. C. Chi, and C. P. Liao, “RF loss and cross talk on extremely high resistivity (10K-1MΩ-cm) Si fabricated by ion implantation,” in IEEE MTT-S Int’l Microwave Symp. Dig 1, 2000, pp. 221-224
[3.1.11] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, V. Liang, J. K. Chen, S. C. Chien, D. S. Duh, and W. J. Lin, Low RF loss and noise of transmission lines on Si substrates using an improved ion implantation process, IEEE MTT-S Int’l Microwave Symp. Dig., 2 2003, pp. 963-966.
[3.2.1] D. M. Pozar, Microwave Engineering, John Wiley & Sons, New York, (1998), 2nd Ed.
[3.2.2] S. D’Agostino and C. Paoloni, Design of high-performance power-distributed amplifier using Lange couplers, IEEE Trans. Microwave Theory Tech., vol. 42, 1994, pp. 2525 – 2530.
[3.2.3] C. Y. Chi and G. M. Rebeiz, Design of Lange-couplers and single-sideband mixers using micromachining techniques, IEEE Trans. Microwave Theory Tech., vol. 45, 1997, pp. 291 – 294.
[3.2.4] Y. Konishi, I. Awai, Y. Fukuoka and M. Nakajima, “A directional coupler of vertically installed planar circuit structure,” IEEE Trans. Microwave Theory Tech., vol. 36, 1988, pp. 1057 – 1063.
[3.2.5] M. Nakajima and E. Yamashita, “A quasi-TEM design method for 3 dB hybrid couplers using a semi-reentrant coupling section,” IEEE Trans. Microwave Theory Tech., vol. 38, 1990, pp. 1731 – 1737.
[3.2.6] F. Masot, F. Medina and M. Horno, Analysis and experimental validation of a type of three-microstrip directional coupler, IEEE Trans. Microwave Theory Tech., vol. 42, 1994, pp. 1624 – 1631.
[3.2.7] K. Sachse and A. Sawicki, Quasi-Ideal multilayer two- and three-strip sirectional couplers for monolithic and hybrid MIC’s, IEEE Trans. Microwave Theory Tech., vol. 47, 1999, pp. 1873 – 1882.
[3.2.8] K. T. Chan, A. Chin, Y. D. Lin, C. Y. Chang, C. X. Zhu, M. F. Li, D. L. Kwong, S. McAlister, D. S. Duh, and W. J. Lin, Integrated antennas on Si with over 100 GHz performance, fabricated using an optimized proton implantation process, IEEE Microwave & Wireless Components Lett., vol. 13, 2003, pp. 487-489.
[3.2.9] A. Chin, K. T. Chan, H. C. Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M.-F. Li, S. P. McAlister, and D. L. Kwong, RF passive devices on Si with excellent performance close to ideal devices designed by Electro-Magnetic simulation, in Int’l Electron Devices Meeting (IEDM) Tech. Dig., (2003), pp. 375-378.
[3.2.10] Zeland Software Inc., IE3D simulator, (1997).
[4.1.1] H. Iwai, “Future semiconductor manufacturing- Challenges and opportunities,” in IEDM Tech. Dig., 2004, pp. 11-16
[4.1.2] M. Brillouët, “Emerging technologies on silicon,” in IEDM Tech. Dig., 2004, pp. 11-16.
[4.1.3] A. Chin and S. P. McAlister, “The power of functional scaling: beyond the power consumption challenge and the scaling roadmap,” IEEE Circuit & Devices Magazine, Jan/Feb. 2005.
[4.1.4] D. S. Yu, Albert Chin, C. C. Laio, C. F. Lee, C. F. Cheng, W. J. Chen, C. Zhu, M.-F. Li, W. J. Yoo, S. P. McAlister, and D. L. Kwong, “3D GOI CMOSFETs with Novel IrO2(Hf) Dual Gates and High-�� Dielectric on 1P6M-0.18�慆-CMOS,” in IEDM Tech. Dig., 2004, pp. 181-184.
[4.1.5] B. P. Shieh, L. C. Bassman, D.-K. Kim, K. C. Saraswat, M. D. Deal, J. P. McVittie, R. S. List, S. Nag, and L. Ting, “Integration and reliability issues for low capacitance air-gap interconnect structures,” in IEEE Int. Interconnect Technology Conference (IITC) Dig., 1998 , pp. 125-127.
[4.1.6] D. S. Yu, K. T. Chan, A. Chin, S. P. McAlister, C. Zhu, M. F. Li, and Dim-Lee Kwong, “Narrow-Band Band-pass Filters on Silicon Substrates at 30 GHz,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, vol. 3, pp. 1467-1470.
[4.1.7] A. Chin, K. T. Chan, H. C. Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M.-F. Li, S. P. McAlister, and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by Electro-Magnetic simulation,” in IEDM Tech. Dig., 2003, pp. 375-378.
[4.1.8] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, “Integrated Antennas on Si, Proton-Implanted Si and Si-on-Quartz,” in IEDM Tech. Dig., 2001, pp. 903-906.
[4.1.9] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, S. C. Pai, C. C. Chi, and C. P. Liao, “RF loss and cross talk on extremely high resistivity (10K-1M��-cm) Si fabricated by ion implantation,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, vol. 1, pp. 221-224.
[4.1.10] T. Ohguro, K. Kojima, H. S. Momose, S. Nitta, T. Fukuda, T. Enda, and Y. Toyoshima, “Improvement of high resistivity substrate for future mixed analog-digital application,” in Symp. On VLSI Tech. Dig., 2002, pp. 158-159.
[4.1.11] J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, C. Jahnes, C. Uzoh, E. J. O'Sullivan, K. K. Chan, M. Soyuer, P. Roper, and S. Cordes, “Monolithic spiral inductors fabricated using a VLSI Cu-damascene interconnect technology and low-loss substrates,” in IEDM Tech. Dig., 1996, pp. 99-102.
[5.1.1] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh, “Millimeter-wave silicon MMIC interconnect and coupler using multilayer polymide technology,” IEEE Trans. Microwave Theory Tech., vol. 48, 2000, pp. 1482-1487.
[5.1.2] A. Triantafyllou, A. Farcy, P. Benech, F. Ndagijimana, J. Torres, O. Exshaw, C. Tinella, O. Richard, C. Raynaud, "High transmission performance integrated antennas on SOI substrate for VLSI wireless interconnects,"�} Int. Interconnect Technology Conference (IITC), 2005, pp. 80-82.
[5.1.3] J. W. Joyner, P. Z. Ha, J. D. Meindl, "Global interconnect design in a three-dimensional system-on-a-chip." IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 12, Issue 4, pp.367 – 372, 2004.
[5.1.4] K. T. Chan, A. Chin, Y. B. Chen, Y. D. Lin, T. S. Duh, and W. J. Lin, "Integrated antennas on Si, proton-implanted Si and Si-on-quartz," IEDM Tech. Dig., 2001, pp. 903-906.
[5.1.5] S. B. Cohn, "Parallel-Coupled Transmission-Line-Resonator Filters," IEEE Trans. Microwave Theory Tech., vol. 6, pp. 223-231, 1958.
[5.1.6] Y. Eo, W. R. Eisenstadt, J. Y. Jeong, and Oh-Kyong Kwon, "A New On-Chip Interconnect Crosstalk Model and Experimental Verification for CMOS VLSI Circuit Design, IEEE Trans. on Electron Devices, vol. 47, 2000, pp. 129-140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top