|
Chapter 1 [1] M-L Chen, W. T. Cochran, T. S. Yang, C. Dziuba, C-W. Leung, W. Lin, and W. Jungling, “Constraints in p-channel device engineering for submicron CMOS technologies,” in IEDM Tech. Dig., 1988, pp. 390-393. [2] F. K. Baker, J. R. Pfiester, T. C. Mele, H.-H. Tseng, P. J. Tobin, J. D. Hayden, C. D. Gunderson, and L. C. Parrillo, “The influence of fluorine on threshold voltage instabilities in p+ polysilicon gated p-channel MOSFETs ,” in IEDM Tech. Dig., 1989, pp. 443-446. [3] J. M. Sung, C. Y. Lu, M. L. Chen, S. J. Hillenius, W. S. Lindenberger, L. Manchanda, T. E. Smith, and S. J. Wang,, “Fluorine effect on boron diffusion of p+ gate devices,” in IEDM Tech. Dig., 1989, pp. 447-480. [4] K. F. Schuegraf, C. C. King, and C. Hu, “Impact of polysilicon depletion in thin oxide MOS technology,” in Proc. Tech. Papers 1993 Int. Symp. VLSI Technology, Systems, and Applications, 1993, pp.86-90. [5] H. F. Luan, B. Z. Wu, L. G. Kang, R. Vrtis, D. Roberts, and D. L. Kwong, “Ultra thin high quality Ta2O5 gate dielectric prepared by in-situ rapid thermal processing,” in IEDM Tech. Dig., 1998, pp.609-612. [6] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics,” in IEDM Tech. Dig., 2000, pp.27-30. [7] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high-k gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. on Electron Devices, vol. 46, pp.1537-1544, July 1999. [8] E. Josse and T. Skotnicki, “Polysilicon gate with depletion or metallic gate with buried channel: What evil worse,” in IEDM Tech. Dig., 1999, pp.661-664. [9] Qiang Lu, Y. C. Yeo, Pushkar Ranade, Hideki Takeuchi, T. J. King, and C. Hu, “Dual-metal gate technology for deep-submicron CMOS transistors,” in Symp. on VLSI Tech., 2000, pp.72-73. [10] Y. C. Yeo, Qiang Lu, Pushkar Ranade, Hideki Takeuchi, K. J. Yang, I. Polishchuk, T. J. King, C. Hu, S. C. Song, H. F. Luan, and D.-L. Kwong, “Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric,” IEEE Electron Device Letters, vol.22, no.5, pp.227-229, May 2001. [11] Z. B. Zhang, S. C. Song, C. Huffman, J. Barnett, N. Moumen, H. Alshareef, P. Majhi, M. Hussain, M. S. Akbar, J. H. Sim, S. H. Bae, B. Sassman, and B. H. Lee, “Integration of dual metal gate CMOS with TaSiN (NMOS) and Ru (PMOS) gate electrodes on HfO2 gate dielectric, ” in Symp. on VLSI Tech., 2005, pp.50-51. [12] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET – A self-aligned double-gate MOSFET scalable to 20nm,” IEEE Trans. on Electron Devices, vol. 47, pp.2320-2325, Dec. 2000. [13] Leland Chang, Stephen Tang, T. J. King, Jeffrey Bokor, and C. Hu, “Gate length scaling and threshold voltage control of double-gate MOSFETs,” in IEDM Tech. Dig., 2000, pp. 719-722. [14] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm p-channel FinFET,” IEEE Trans. on Electron Devices, vol. 48, pp.880-886, May 2001. [15] L. Chang, K. J. Yang, Y.-C. Yeo, Y.-K. Choi, T.-J. King, and C. Hu, “Reduction of direct-tunneling gate leakage current in double-gate and ultra-thin body MOSFETs,” in IEDM Tech. Dig., 2001, pp.99-102. [16] F.-L. Yang, H.-Y. Chen, F.-C. Chen, Y.-L. Chan, K.-N. Yang, C.-J. Chen, H.-J. Tao, Y.-K. Choi, M.-S. Liang, and C. Hu, “35nm CMOS FinFETs,” in Symp. on VLSI Tech., 2002, pp.104-105. [17] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, “FinFET scaling to 10nm gate length,” in IEDM Tech. Dig., 2002, pp.251-254. [18] F.-L. Yang, H.-Y. Chen, F.-C. Chen, C.-C. Huang, C.-Y. Chang, H.-K. Chiu, C.-C. Lee, C.-C. Chen, H.-T. Huang, C.-J. Chen, H.-J. Tao, Y.-C. Yeo, M.-S. Liang, and C. Hu, “25 nm CMOS Omega FETs,” in IEDM Tech. Dig., 2002, pp.255-258. [19] Y.-K. Choi, L. Chang, P. Ranade, J.-S. Lee, D. Ha, S. Balasubramanian, A. Agarwal, M. Ameen, T.-J. King, and J. Bokor, “FinFET Process Refinements for improved mobility and gate work function engineering,” in IEDM Tech. Dig., 2002, pp.259-262. [20] A. Chatterjee, R. A. Chapman, G. Dixit, J. Kuehne, S. Hattangady, H. Yang, G. A. Brown, R. Aggarwal, U. Erdogan, Q. He, M. Hanratty, D. Rogers, S. Murtaza, S. J. Fang, R. Kraft, A. L. P. Rotondaro, J. C. Hu, M. Terry, W. Lee, C. Fernando, A. Konecni, G. Wells, D. Frystak, C. Bowen, M. Rodder, and I.-C. Chen, “Sub-100nm gate length metal gate NMOS transistors fabricated by a replacement gate process,” in IEDM Tech. Dig., 1997, pp.821-824. [21] A. Chatterjee, R. A. Chapman, K. Joyner, M. Otobe, S. Hattangady, M. Bevan, G. A. Brown, H. Yang,Q. He, D. Rogers, S.J. Fang, R. Kraft, A. L. P. Rotondaro, M. Terry, K. Brennan, S.-W. Aur, J. C. Hu, H.-L. Tsai, P. Jones, G. Wilk, M. Aoki, M. Rodder, and I.-C. Chen, “CMOS metal replacement gate transistors using tantalum pentoxide gate insulator,” in IEDM Tech. Dig., 1998, pp.777-780. [22] A. Yagishita, T. Saito, K. Nakajima, S. Inumiya, Y. Akasaka, Y. Ozawa, G. Minamihaba, H. Yano, K. Hieda, K. Suguro, T. Arikado, and K. Okumura, “High performance metal gate MOSFETs fabricated by CMP for 0.1μm regime,” in IEDM Tech. Dig., 1998, pp.785-788. [23] A. Yagishita, T. Saito, K. Nakajima, S. Inumiya, Y. Akasaka, Y. Ozawa, K. Hieda, Y. Tsunashima, K. Suguro, T. Arikado, and K. Okumura, “High performance damascene metal gate MOSFET’s for 0.1μm regime,” IEEE Trans. on Electron Devices, vol.47, no.5, pp.1028-1034, May 2000. [24] S. Matsuda, H. Yamakawa, A. Azuma, and Y. Toyoshima, “Performance improvement of metal gate CMOS technologies,” in Symp. on VLSI Tech., 2001, pp.63-64. [25] F. Ducroquet, H. Achard, F. Coudert, B. Previtali, J.-F. Lugand, L. Ulmer, T. Farjot, Y. Gobil, M. Heitzmann, S. Tedesco, M.-E. Nier, and S. Deleonibus, “Full CMP integration of CVD TiN damascene sub-0.1-μm metal gate devices for ULSI applications,” IEEE Trans. on Electron Devices, vol.48, no.8, pp.1816-1821, Aug. 2001. [26] K. Matsuo, T. Saito, A. Yagishita, T. Iinuma, A. Murakoshi, K. Nakajima, S. Omoto, and K. Suguro, “Damascene metal gate MOSFETs with Co silicided source/drain and high-k gate dielectrics,” in Symp. on VLSI Tech., 2000, pp.70-71. [27] I. Polishchuk, P. Ranade, T.-J. King, and C. Hu, “Dual work function metal gate CMOS technology using metal interdiffusion,” IEEE Electron Device Letters, vol.22, no.9, pp.444-446, Sep. 2001. [28] I. Polishchuk, P. Ranade, T.-J. King, and C. Hu, “Dual work function metal gate CMOS transistors by Ni-Ti interdiffusion,” IEEE Electron Device Letters, vol.23, no.4, pp.200-202, April 2002. [29] P. Ranade, Y.-C. Yeo, Q. Lu, H. Takeuchi, T.-J. King, and C. Hu, “Molybdenum as a gate electrode for deep sub-micron CMOS technology,” in Mat. Res. Soc. Symp., vol.611, 2000, pp.C3.2.1-C3.2.6. [30] Q. Lu, R. Lin, P. Ranade, T.-J. King, C. Hu, “Metal gate work function adjustment for future CMOS technology,” in Symp. on VLSI Tech., 2001, pp.45-46. [31] R. Lin, Q. Lu, P. Ranade, T.-J. King, C. Hu, “An adjustable work function technology using Mo gate for CMOS devices,” IEEE Electron Device Letters, vol.23, no.1, pp.49-51, Jan. 2002. [32] P. Ranade, Y.-K. Choi, D. Ha, A. Agarwal, M. Ameen, and T.-J. King, “Tunable work function molybdenum gate technology for FDSOI-CMOS,” in IEDM Tech. Dig., 2002, pp.363-366. [33] M. Qin, Vincent M. C. Poon, and Stephen C. H. Ho, “Investigation of polycrystalline nickel silicide films as a gate material,” Journa of the Electrochemical Society, 148(5), p. G271-G274, 2001. [34] J. Kedzierski, E. Nowak, T. Kanarsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Saunders, K. Wong, D. Canaperi, M. Krishnan, K. –L. Lee, Beth A. Rainey, D. Fried, P. Cottrell, H. –S. Philip Wong, M. Ieong, and W. Haensch, “Metal-gate FinFET and full-depleted SOI devices using total gate silicidation,” in IEDM Tech. Dig., 2002, pp.247-250. [35] W. P. Maszara, Z. Krivokapic, P. King, J.-S. Goo, and M.-R. Lin, “Transistors with dual work function metal gates by single full silicidation (FUSI) of polysilicon gates,” in IEDM Tech. Dig., 2002, pp.367-370. [36] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual work function metal gates using full nickel silicidation of doped poly-Si,” IEEE Electron Device Letters, vol. 24, pp.631-633, Oct. 2003. [37] J. Yuan and Jason C. S. Woo, “Tunable work function in fully nickel-silicided polysilicon gates for metal gate MOSFET applications,” IEEE Electron Device Letters, vol. 26, pp.87-89, Feb. 2005. [38] C. Cabral, Jr. J. Kedzierski, B. Linder, S. Zafar, V. Narayanan, S. Fang, A. Steegen, P. Kozlowski, R. Carruthers, and R. Jammy, “Dual workfunction fully silicided metal gates,” in Symp. on VLSI Tech., 2004, pp.184-185. [39] J. R. Hauser and K. Ahmed, “Characterization of ultra-thin oxides using electrical C-V and I-V measurements,” in Characterization and Metrology for ULSI Technology: 1998 International Conference, 1998, pp.235-239. [40] K. Yang, Y.-C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” in Symp. on VLSI Tech., 1999, pp.77-78.
Chapter 2 [1] E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Hensen, P. K. McLarty, G. Lucovsky, J. R. Hauser, and J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics,” IEEE Trans. on Electron Devices, vol.45, pp.1350-1355, June 1998. [2] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. –C. Cheng, S. P. Tay, T. –J. King, and C. Hu, “Leakage current comparison between ultra-thin Ta2O5 films and conventional gate dielectrics,” IEEE Electron Device Letters, vol.19, pp.341-342, Sept. 1998. [3] K. F. Schuegraf, C. C. King, and C. Hu, “Impact of polysilicon depletion in thin oxide MOS technology,” in Proc. Tech. Papers 1993 Int. Symp. VLSI Technology, Systems, and Applications, 1993, pp.86-90. [4] James R. Pfiester, Frank K. Baker, Thomas C. Mele, H. H. Tseng, Philip J. Tobin, James D. Hayden, James W. Miller, Craig D. Gunderson, and Louis C. Parrillo, “The effects of boron penetration on p+ polisilicon gated PMOS devices,” IEEE Trans. on Electron Devices, vol.37, no.8, pp.1842-1851, August 1990. [5] H. F. Luan, B. Z. Wu, L. G. Kang, R. Vrtis, D. Roberts, and D. L. Kwong, “Ultra thin high quality Ta2O5 gate dielectric prepared by in-situ rapid thermal processing,” in IEDM Tech. Dig., 1998, pp.609-612. [6] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics,” in IEDM Tech. Dig., 2000, pp.27-30. [7] Leland Chang, Stephen Tang, T. J. King, Jeffrey Bokor, and C. Hu, “Gate length scaling and threshold voltage control of double-gate MOSFETs,” in IEDM Tech. Dig., 2000, pp.719-722. [8] Qiang Lu, Y. C. Yeo, Pushkar Ranade, Hideki Takeuchi, T. J. King, and C. Hu, “Dual-metal gate technology for deep-submicron CMOS transistors,” in Symp. on VLSI Tech., 2000, pp.72-73. [9] Huicai Zhong, Shin-Nam Hong, You-Seok Suh, Heather Lazar, Greg Heuss, and Veena Misra, “Properties of Ru-Ta alloys as gate electrodes for NMOS and PMOS silicon devices,” in IEDM Tech. Dig., 2001, pp.467-480. [10] JaeHoon Lee, Huicai Zhong, You-Seok Suh, Greg Heuss, Jason Gurganus, Bei Chen, and Veena Misra, “Tunable work function dual metal gate technology for bulk and non-bulk CMOS,” in IEDM Tech. Dig., 2002, pp.359-362. [11] Bing-Yue Tsui and Chih-Feng Huang, “Wide range work function modulation of binary alloys for MOSFET application,” IEEE Electron Device Letters, vol.24, pp.153-155, March 2003. [12] S. H. Bae, W. P. Bai, H. C. Wen, S. Mathew, L. K. Bera, N. Balasubramanian, N. Yamada, M. F. Li, and D. L. Kwong, “Laminated metal gate electrode with tunable work function for advanced CMOS,” in Symp. on VLSI Tech., 2004, pp.188-189. [13] Pushkar Ranade, Yang-Kyu Choi, Daewon Ha, Aditya Agarwal, Michael Ameen, and Tsu-Jae King, “Tunable work function molybdenum gate technology for FDSOI-CMOS,” in IEDM Tech. Dig., 2002, pp.363-366. [14] K. J. Yang, Y. -C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” in Symp. on VLSI Tech., 1999, pp.77-78. [15] P. Ranade, Y. C. Yeo, Q. Lu, H. Takeuchi, T-J. King, and C. Hu, “Molybdenum metal gate MOS technology for post-SiO2 gate dielectrics,” in Mat. Res. Soc. Symp., vol.611, 2000, pp.C3.2.1-C3.2.6. [16] A. Yagishita, T. Saito, K. Nakajima, S. Inumiya, Y. Akasaka, Y. Ozawa, G. Minamihaba, H. Yano, K. Hieda, K. Suguro, T. Arikado, and K. Okumura, “High performance metal gate MOSFETs fabricated by CMP for 0.1�慆 regime,” in IEDM Tech. Dig., 1998, pp.785-788. [17] C. D. Gelatt Jr., and H. Ehrenreich, “Charge transfer in alloys: AgAu,” Phys. Rev. B, vol. 10, no. 2, pp.398-415, July 1974. [18] C. Kittel, Introduction to Solid State Physics, 7th ed. New York: Wiley, 1996, pp.151-157. [19] Massalski Thaddeus B. ed., Binary Alloy Phase Diagrams, Metal Park, Ohio: American Society for Metals, 1990, pp.2088-2089.
Chapter 3 [1] R. Beyers, “Thermaldynamic considerations in refractory metal-silicon- oxygen systems,” Journal of Applied Physics, 56(1), pp. 147-152, 1 July 1984. [2] P. Ranade, Y. C. Yeo, Q. Lu, H. Takeuchi, T-J. King, and C. Hu, “Molybdenum metal gate MOS technology for post-SiO2 gate dielectrics,” in Mat. Res. Soc. Symp., vol.611, 2000, pp.C3.2.1-C3.2.6. [3] Pushkar Ranade, Yang-Kyu Choi, Daewon Ha, Aditya Agarwal, Michael Ameen, and Tsu-Jae King, “Tunable work function molybdenum gate technology for FDSOI-CMOS,” in IEDM Tech. Dig., 2002, pp.363-366. [4] Veena Misra, Greg P. Heuss, and Huicai Zhong, “Use of metal-oxide- semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2,” Applied Physics Letters, vol.78, no.26, pp.4166-4168, 25 June 2001. [5] A. Yagishita, T. Saito, K. Nakajima, S. Inumiya, Y. Akasaka, Y. Ozawa, G. Minamihaba, H. Yano, K. Hieda, K. Suguro, T. Arikado, and K. Okumura, “High performance metal gate MOSFETs fabricated by CMP for 0.1μm regime,” in IEDM Tech. Dig., 1998, pp.785-788.
Chapter 4 [1] “International Technology Roadmap for Semiconductors—Front-End Process,” Semiconductor Industry Association, 2004. [2] E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Hensen, P. K. McLarty, G. Lucovsky, J. R. Hauser, and J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics,” IEEE Trans. on Electron Devices, vol.45, pp.1350-1355, June 1998. [3] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. –C. Cheng, S. P. Tay, T. –J. King, and C. Hu, “Leakage current comparison between ultra-thin Ta2O5 films and conventional gate dielectrics,” IEEE Electron Device Letters., vol.19, pp.341-342, Sept. 1998. [4] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high-k gate dielectrics and metal gate electrodes on sub-100 nm MOSFET’s,” IEEE Trans. on Electron Devices, vol.46, pp.1537-1544, July 1999. [5] Y. Abe, T. Oishi, K. Shiozawa, Y. Tokuda, and S. Satoh, “Simulation study on comparison between metal gate and polysilicon gate for sub-quarter-micron MOSFET’s,” IEEE Electron Device Letters, vol.20, pp.632-634, Dec. 1999. [6] Leland Chang, Stephen Tang, T. J. King, Jeffrey Bokor, and C. Hu, “Gate length scaling and threshold voltage control of double-gate MOSFETs,” in IEDM Tech. Dig., 2000, pp.719-722. [7] Qiang Lu, Y. C. Yeo, Pushkar Ranade, Hideki Takeuchi, T. J. King, and C. Hu, “Dual-metal gate technology for deep-submicron CMOS transistors,” in Symp. on VLSI Tech., 2000, pp.72-73. [8] M. Qin, Vincent M. C. Poon, and Stephen C. H. Ho, “Investigation of polycrystalline nickel silicide films as a gate material,” Journa of the Electrochemical Society, 148(5), pp.G271-G274, 2001. [9] J. Kedzierski, E. Nowak, T. Kanarsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Saunders, K. Wong, D. Canaperi, M. Krishnan, K.-L. Lee, Beth A. Rainey, D. Fried, P. Cottrell, H.-S. Philip Wong, M. Ieong, and W. Haensch, “Metal-gate FinFET and full-depleted SOI devices using total gate silicidation,” in IEDM Tech. Dig., 2002, pp.247-250. [10] W. P. Maszara, Z. Krivokapic, P. King, J. –S. Goo, and M. –R. Lin, “Transistors with dual work function metal gates by single full silicidation (FUSI) of polysilicon gates,” in IEDM Tech. Dig., 2002, pp.367-370. [11] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual work function metal gates using full nickel silicidation of doped poly-Si,” IEEE Electron Device Letters, vol.24, pp.631-633, Oct. 2003. [12] J. Yuan and Jason C. S. Woo, “Tunable work function in fully nickel-silicided polysilicon gates for metal gate MOSFET applications,” IEEE Electron Device Letters, vol.26, pp.87-89, Feb. 2005. [13] C. Cabral, Jr. J. Kedzierski, B. Linder, S. Zafar, V. Narayanan, S. Fang, A. Steegen, P. Kozlowski, R. Carruthers, and R. Jammy, “Dual workfunction fully silicided metal gates,” in Symp. on VLSI Tech., 2004, pp.184-185. [14] Pushkar Ranade, Yang-Kyu Choi, Daewon Ha, Aditya Agarwal, Michael Ameen, and Tsu-Jae King, “Tunable work function molybdenum gate technology for FDSOI-CMOS,” in IEDM Tech. Dig., 2002, pp.363-366. [15] R. Beyers, “Thermaldynamic considerations in refractory metal-silicon- oxygen systems,” Journal of Applied Physics, 56(1), pp.147-152, 1 July 1984. [16] K. J. Yang, Y. -C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” in Symp. on VLSI Tech., 1999, pp.77-78. [17] Ronald. Lin, Q. Lu, P. Ranade, T. –J. King, and C. Hu, “An adjustable work function technology using Mo gate for CMOS devices,” IEEE Electron Device Letters, vol.23, pp.49-51, Jan. 2002. [18] J. M. Liang and L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” Journal of Applied Physics, 79(8), pp.4072-4077, 15 April 1996. [19] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, edited by Jill Chastain, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Minnesota: Physical Electronics Division, 1992. [20] J. M. Slaughter, Arye Shapiro, Patrick A. Kearney, and Charles M. Falco, “Growth of molybdenum on silicon: Structure and interface formation,” Phys. Rev. B, vol.44, no.2, pp.3854-3863, 1991. [21] Naoya Ohishi, Hideto Yanagisawa, Katsutaka Sasaki, and Yoshio Abe, “Initial silicide formation process of Mo/(100) Si system prepared using an ultrahigh-vacuum sputtering system,” Electronics and Communications in Japan, Part 2: Electronics, vol.84, no.3, pp.71-78, 2001.
Chapter 5 [1] E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Hensen, P. K. McLarty, G. Lucovsky, J. R. Hauser, and J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics,” IEEE Trans. on Electron Devices, vol.45, pp.1350-1355, June 1998. [2] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. –C. Cheng, S. P. Tay, T. –J. King, and C. Hu, “Leakage current comparison between ultra-thin Ta2O5 films and conventional gate dielectrics,” IEEE Electron Device Letters, vol.19, pp.341-342, Sept. 1998. [3] H. F. Luan, B. Z. Wu, L. G. Kang, R. Vrtis, D. Roberts, and D. L. Kwong, “Ultra thin high quality Ta2O5 gate dielectric prepared by in-situ rapid thermal processing,” in IEDM Tech. Dig., 1998, pp.609-612. [4] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics,” in IEDM Tech. Dig., 2000, pp.27-30. [5] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual work function metal gates using full nickel silicidation of doped poly-Si,” IEEE Electron Device Letters, vol.24, pp.631-633, Oct. 2003. [6] J. Yuan and Jason C. S. Woo, “Tunable work function in fully nickel-silicided polysilicon gates for metal gate MOSFET applications,” IEEE Electron Device Letters, vol.26, pp.87-89, Feb. 2005. [7] T. Nabatame, M. Kadoshima, K. Iwamoto, N. Mise, S. Migita, M. Ohno, H. Ota, N. Yasuda, A. Ogawa, K. Tominaga, H. Satake, and A. Toriumi, “Partial silicides technology for tunable work function electrodes on high-k gate dielectrics─Fermi level pinning controlled PtSix for HfOx(N) pMOSFET─,” in IEDM Tech. Dig., 2004, pp.83-86. [8] C.Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy, R. Rai, L. Hebert, H. Tseng, B. White, and P. Tobin, “Fermi level pinning at the PolySi/metal oxide interface,” in Symp. on VLSI Tech., 2003, pp.09-10. [9] E. Cartier, V. Narayanan, E. P. Gusev, P. Jamison, B. Linder, M. Steen, K. K. Chan, M. Frank, N. Bojarczuk, M. Copel, S. A. Cohen, S. Zafar, A. Callegari, M. Gribelyuk, M. P. Chudzik, C. Cabral Jr., R. Carruthers, C. D’Emic, J. Newbury, D. Lacey, S. Guha, and R. Jammy, “Systematic study of pFET Vt with Hf-based gate stacks with poly-Si and FUSI gates,” in Symp. on VLSI Tech., 2004, pp.44-45. [10] M. Koyama, Y. Kamimuta, T. Ino, A. Kaneko, S. Inumiya, K. Eguchi, M. Takayanagi, and A. Nishiyama, “Careful examination on the asymmetric Vfb shift problem for poly-Si/HfSiON gate stack and its solution by the Hf concentration control in the dielectric near the poly-Si interface with small EOT expense,” in IEDM Tech. Dig., 2004, pp.499-502. [11] E. P. Gusev, C. Cabral Jr., B. P. Linder, Y. H. Kim, K. Maitra, E. Cartier, H. Nayfeh, R. Amos, G. Biery, N. Bojarczuk, A. Callegari, R. Carruthers, S. A. Cohen, M. Copel, S. Fang, M. Frank, S. Guha, M. Gribelyuk, P. Jamison, R. Jammy, M. Ieong, J. Kedzierski, P. Kozlowski, V. Ku, D. Lacey, D. LaTulipe, V. Narayanan, H. Ng, P. Nguyen, J. Newbury, V. Paruchuri, R. Rengarajan, G. Shahidi, A. Steegen, M. Steen, S. Zafar, and Y. Zhang, “Advanced gate stacks with fully silicided (FUSI) gates and high-k dielectrics: enhanced performance at reduced gate leakage,” in IEDM Tech. Dig., 2004, pp.79-82. [12] K. G. Anil, A. Veloso, S. Kubicek, T. Schram, E. Augendre, J. –F. de Marneffe, K. Devriendt, A. Lauwers, S. Brus, K. Hensen, and S. Biesemans, “Demonstration of fully Ni-silicided metal gates on HfO2 based high-k gate dielectrics as a candidate for low power applications,” in Symp. on VLSI Tech., 2004, pp.190-191. [13] M. Kadoshima, A. Ogawa, M. Takahashi, H. Ota, N. Mise, K. Iwamoto, S. Migita, H. Fujiwara, H. Satake, T. Nabatame, and A. Toriumi, “Fermi level pinning engineering by Al compositional modulation and doped partial silicide for HfAlOx(N) CMOSFETs,” in Symp. on VLSI Tech., 2005, pp.70-71. [14] C. S. Park, B. J. Cho, L. J. Tang, and D. –L. Kwong, “Substituted aluminum metal gate on high-k dielectric for low work function and Fermi-level pinning free,” in IEDM Technical Digest, 2004, pp.299-302. [15] M. Terai, K. Takahashi, K. Manabe, T. Hase, T. Ogura, M. Saitoh, T. Iwamoto, T. Tatsumi, and H. Watanabe, “Highly reliable HfSiON CMOSFET with phase controlled NiSi (NFET) and Ni3Si (PFET) FUSI gate electrode,” in Symp. on VLSI Tech., 2005, pp.68-69. [16] J. A. Kittl, A. Veloso, A. Lauwers, K. G. Anil, C. Demeurisse, S. Kubicek, M. Niwa, M. J. H. van Dal, O. Richard, M. A. Pawlak, M. Jurczak, C. Vrancken, T. Chiarella, S. Brus, K. Maex, and S. Biesemans, “Scalability of Ni FUSI gate processes: phase and Vt control to 30nm gate lengths,” in Symp. on VLSI Tech., 2005, pp.72-73. [17] K. J. Yang, Y. -C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” in Symp. on VLSI Tech., 1999, pp.77-78. [18] J. H. Lee, Y. –S. Suh, H. Lazar, R. Jha, J. Gurganus, Y. Lin, and V. Misra, “Compatibility of dual metal gate electrodes with high-k dielectrics for CMOS,” in IEDM Tech. Dig., 2003, pp.323-326.
|