跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡國信
研究生(外文):Guo-Xin Hu
論文名稱:以偏軸發光照射實現具有光瞳濾波效果的接觸窗相移圖罩之模擬與研究
論文名稱(外文):The Study and Simulation of the Contact-Hole Pattern Phase Shifting Mask with the Benefit of Lens Pupil Filters by Off-Axis Illumination
指導教授:羅正忠羅正忠引用關係
指導教授(外文):Jen-Chung Lou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:47
中文關鍵詞:微影相位移圖罩接觸窗偏軸照射解析度增強技術圖罩
外文關鍵詞:lithographyphase shifting maskcontact-holeoff-axis illuminationResolution Enhancement Technologiesmask
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
隨著積體電路元件尺寸的微縮化,微影製程的線幅寬度(feature size)需求也越來越小,因此一張圖罩(photo mask)內所被要求容納的圖案數量也大大的增加。以目前製程所處的65奈米節點而言,製作邏輯元件的佈局設計裡的接觸窗層的圖罩將會是對微影製程非常嚴苛的一大挑戰。為了達成用一張圖罩同時曝出具有各種間距(pitches)的密集接觸窗以及孤立接觸窗,我們將會需要高數值孔徑的低K1值成像技術,以及各種的解析度增強技術(Resolution Enhancement Technologies)。
解析度增強技術中的偏軸發光照射(Off-Axis Illumination)將有助於密集接觸窗的曝光成像,然而也將使大間距接觸窗的聚焦深度(depth of focus)減少以及圖罩偏差因子(Mask Error Enhancement Factor)變大。著眼此點,我們企圖將超聚焦容忍度加強曝光技術運用在偏軸發光照射上。於是我們先找出一組合適的光瞳濾波法的參數,利用此組參數找出最佳的圖罩調變法的參數,接著用近似圖罩調變法的方式來產生適用於偏軸發光照射的接觸窗圖案。但是這樣子的圖案其製程視窗並不甚理想,必須再經過一些參數上的調整。最後我們將圖案簡化成像是反散條(anti-scattering bar)及緣邊型(Rim-type)相移圖罩綜合體的設計,其製程視窗可和搭配傳統照明方式的緣邊型相移圖罩相比擬。除此之外,用此種設計搭配偏軸發光照射時,在投射光瞳平面上所成的頻譜影像與緣邊型相移圖罩搭配傳統照明時所成的頻譜影像非常相似,都具有超聚焦容忍度加強曝光技術的光瞳濾波效應,能將聚焦深度大幅的提昇。
Abstract (Chinese) ...................................................................................................... I
Abstract (English) .....................................................................................................III
Acknowledgements ................................................................................................... V
Contents..................................................................................................................... VI
Figure Captions ...................................................................................................... VIII

Chapter 1 Introduction
1.1 Introduction to Optical Lithography.............................. .................1
1.2 Motivation……….……..................................................................3
1.3 Resolution Enhancement Technologies...........................................3
1.4 Organization of This Thesis............................................................7

Chapter 2 Models of Optical Lithography Imaging
2.1 The Optical Lithography Exposure System……….……..…...…13
2.2 Models of Optical Imaging...........................................................13
2.3 The Process Window and Energy Latitude ……………....…….15

Chapter 3 The Simulation of Super-FLEX
3.1 The Super-FLEX….......................................................................21
3.2 Super-FLEX by Lens Pupil Filter.................................................22
3.3 Super-FLEX by Mask Modulation Method………......................24
3.4 Super-FLEX and OAI……….......................................................26

Chapter 4 Disscussion and Conclusions
4.1 Disscussion…...............................................................................42
4.2 Conclusions …..............................................................................43

References ................................................................................................................45
[1] Smith, B.W. and Sheats, J.R., eds., Microlithography: Science and Technology, ch. 3, Marcel Dekker, Inc., 1998
[2]F.M. Schellenberg, “Resolution Enhancement Technology: The Past, the Present, and Extensions for the Future,” Proc. SPIE, Vol. 5377, pp. 1-20, 2004.
[3]L.W. Liebmann, “Layout Impact of Resolution Enhancement Techniques: Impediment or Opportunity?” Proc. ISPD’03, April 6-9, Monterey, CA, pp. 110-117, 2003.
[4] P. Jedrasik, “DOF Imporvement by complex pupli filtering for DUV lithography,” Proc. of SPIE. vol. 3679, 1999, pp. 800- 811.
[5]Levenson, M. D. et al. “Improving resolution in photolithography with a phase-shifting mask.” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
[6]Terasawa, T. et al. “0.3 m optical lithography using a phase shifting mask.” Proc. SPIE 1088, 25-33 (1989).
[7]Matsuo, K. et al. “High resolution optical lithography system using oblique incidence illumination.” Technol. Digest IEDM 91, 70-972 (1991).
[8] H. Kang, C. Kim, J. Lee, W. Han, and Y. Koh, “High performance lithography with advanced modified illumination,” IEICE transactions on Electronics, vol. 77-C, no.3, 1994, pp.432-437.
[9] M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with phase shift mask,” IEEE Transactions on Electron Devices, vol.29,no.12, 1982, pp. 1812-1846.
[10] K. Toh, G.Dao, R. Singh, and H.Gaw, “Chromeless Phase shifted mask: A new approach to phase shift masks,” Proc. of SPIE vol.1496, 1990, pp.27-53.
[11] B.J. Lin, “The Attenuated PSM,” Solid State technology 35,1992,pp. 43-47.
[12] T. Terazawa, N. Hasegawa, and H. Fukuda, “Imaging characteristics of multi-phase-shifting and half tone phase shifting masks,” Jpn. J. of Appl. Phys., vol. 30. no. 11B, 1991, pp.2991-2997.
[13] H. Fukuda, A. Imai, and S. Okazaki, “Phase shifting mask and flex method for advanced photolithography,” Proc. of SPIE. vol. 1264, 1990, pp. 14- 25.
[14] H. Fukuda and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography” ,J. Vac. Sci. Technol. B9 (6), Nov/Dec 1991, pp. 3113- 3116.
[15] J.W.Goodman; "Introduction to Fourier Optics", McGraw-Hill, San Francisco 1968.
[16] H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography”, J.Vac. Sci. Technol. B9 (6). (1991)
[17] Hiroshi Fukuda, Y. Kobayashi, K. Hama, T. Tawa, and S. Okazaki, “Evaluation of Pupil Filtering stepper-lens system”, Jpn. J.Appl. Phys. 32, 5845 (1993)
[18] Hiroshi Fukuda “Axial imaging Superposing (Super-FLEX) Effect Using the Mask Modulation Method for in High-Numerical Aperture I-Line Lens”, Jpn. J. Appl. Phys. 30, 3037 (1991)
[19] Oberhettinger, Fritz;” Tables of Fourier transforms and Fourier transforms of distributions”, Berlin/Springer-Verlag, 1990
[20] B. W. Smith, “Forbidden Pitch or Duty-Free: Revealing the Causes of Across-Fitch Imaging Differences”, Proc. of SPIE vol. 5040, pp399-407, 2003.
[21] Chang, Chung-Hsing “Novel contact hole reticle design for enhanced lithography process window in IC manufacturing” ,Proc. of SPIE. vol. SPIE-5645, pp.32-43. 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top