跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林韋霆
研究生(外文):Wei-Ting Lin
論文名稱:新型低功率與高雜訊抑制電生理訊號量測系統之前端電路設計與分析
論文名稱(外文):THE DESIGN AND ANALYSIS OF NEW LOW POWER HIGH CMRR CMOS FRONT-END CIRCUITS FOR ELECTROPHYSIOLOGICAL SIGNAL
指導教授:吳重雨
指導教授(外文):Chung-Yu Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:72
中文關鍵詞:儀表放大器低頻濾波器電生理訊號量測高共模抑制比
外文關鍵詞:INAlow-frequency filterelectrophysiological signal measurementhigh CMRRCMOSlow power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
在無線網路的蓬勃發展下,許多結合無線網路的應用也由此應運而生。居家醫療看戶及遠距醫療即為其中的一項應用,而建構『電生理訊號量測與監控系統之無線化與晶片化』即為實現居家看護與遠距醫療的第一步。當一個生醫量測系統能夠結合無線網路時,我們便能夠在任何地方和任何時間下,輕易的監控一個人的身體狀況。
本論文將設計一個應用於『電生理訊號量測與監控系統』晶片之前端電路,在此前端電路中,包括了兩個部份: 一個用以抑制人體雜訊之儀表放大器以及一個低頻的帶通濾波器。在本論文中,提出一個擁有高共模抑制比的儀表放大器,將有效抑制人體中大量的低頻雜訊,而後端的低頻帶通濾波器的設計將使用『跳蛙架構』 (Leapfrog Structure)來減低元件飄移對於電路表現的影響。

此電生理訊號量測之前端電路,使用台灣積體電路 0.35微米製程模擬,此電路第一級的儀表放大電路操作於3.3伏特,功率消耗為0.1毫瓦,頻寬為2至16千赫茲,有0至60dB之電壓增益,共模拒絕比率可達到200分貝至250分貝以抑制人體中之大量低頻雜訊。在此儀表放大器的後端,是一個可濾出不同所需人體訊號之低頻濾波器,而此操作於3.3伏特下之低頻濾波器,功率消耗為0.13毫瓦,濾波器頻寬為50赫茲至2千赫茲,並有可調整之介於0~60分貝的電壓增益。整體的前端電路消耗0.23毫瓦,有200至250分貝之共模拒絕比率,頻寬為2至16千赫茲。
With the growing development of wireless networks, many applications combined with wireless networks come into existence. Home nursing and remote medical care is one of the applications. And constructing the electrophysiological signals measurement and control system is the first step to realize the home nursing and remote medical care. While the measurement system is combined with wireless network, we can easily monitor the physical condition of people.

In this thesis, we will design the front-end circuit of the electrophysiological signals measurement and control system. The front-end circuit is composed of two parts, the instrumentation amplifier(INA) to compress the noise of human bodies and the low- frequency bandpass filter. In this thesis, we will announce a instrumentation amplifier with high common-mode rejection ratio (CMRR) which can effectively compress the noises in human bodies. The low-frequency bandpass filter behind the instrumentation amplifier uses leapfrog structure to decrease the influence on circuit performance due to devices variation.
The front-end circuits of the electrophysiological signals measurement simulates with TSMC 0.35um technology. The first stage INA operates at 3.3V, consumes the power of 0.1mW. Its bandwidth is between 2~16 kHz, and its CMRR archives the magnitude 200~250 dB to suppress the enormous low-frequency noises in human bodies. Behind the INA is the low-frequency bandpass filter which filters different human-body signals. The low-frequency bandpass filter operates at 3.3V and consumes 0.13mW. Its bandwidth is from 50Hz to 2kHz and has the tunable gain between 0~60dB.
Contents
Chinese Abstract i
English Abstract iii
Contents vi
Table Captions viii
Figure Captions ix

Chapter 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 REVIEW ON ELECTROPHYSIOLOGICAL SIGNAL MEASUREMENT SYSTEM 4
1.2.1 Review of Instrumentation Amplifier Structures 4
1.2.2 Review of Low-Frequency Bandpass Filter Structures 11
1.3 MOTIVATIONS 16
1.4 THESIS ORGANIZATION 17

Chapter 2 ARCHITECTURE AND CIRCUITS DESIGN 19
2.1 ARCHITECTURE DESIGN OF THE INSTRUMENTATION AMPLIFIERS 19
2.1.1 Differential difference operational amplifier (DDA) 19
2.1.2 Differential difference operational transconductance amplifier (DDGM) 20
2.1.3 New structure design of the instrumentation amplifier 20
2.2 CIRCUIT DESIGN OF THE DIFFERENTIAL DIFFERENCE OPERATIONAL
TRANSCONDUCTANCE AMPLIFIER 24
2.2.1 The Flipped Voltage Follower (FVF) 24
2.2.2 The differential difference operational transconductance amplifier 26
2.3 ARCHITECTURE DESIGN OF THE LOW-FREQUENCY BANDPASS FILTER 27
2.3.1 Specification of the low-frequency bandpass filter 27
2.3.2 LC network and the leapfrog structure 28
2.3.3 Gm-C filter 32
2.4 CORE CIRCUIT DESIGN OF THE FILTER 36
2.4.1 The Gm amplifier using the mos resistor 36
2.4.2 The nonideal effects of the Gm amplifiers 38

Chapter 3 SIMULATION RESULTS 44
3.1 SIMULATION RESULTS OF THE FLIPPED VOLTAGE FOLLOWER (FVF) 44
3.2 SIMULATION RESULTS OF THE GM AMPLIFIER 45
3.3 SIMULATION RESULTS OF THE INSTRUMENTATION AMPLIFIERS 46
3.4 SIMULATION RESULTS OF THE LOW-FREQUENCY BANDPASS FILTER 50
3.5 WHOLE SIMULATION OF THE FRONT-END ELECTROPHYSIOLOGICAL SIGNAL MEASUREMENT SYSTEM 53

Chapter 4 CONCLUSIONS AND FUTURE WORKS
4.1 CONCLUSIONS 55
4.2 FUTURE WORKS 56
REFERENCES

[1] The home hospital, IST (Information Society Technologies) 2001, Technologies Serving People, European Commission, Edited by MS Consulting Birmingham, pp. 22-23.
[2] A. A. Al-Imari, K. A. Rashid, and M. Al-Dagstany, “Telemetry based system for measurement and monitoring of biomedical signals,” Proceedings of The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003, pp. 352-356.
[3] Wen-Yaw Chug*, Kang-Ping Lin, Chih-Jen Yen, Cheng-Lun Tsai, and Te-Shin Chen “Analog Processor Chip Design for the Bio-signal Readout Circuit Application” BMES/EMBS Conference, 1999. Proceedings of the First Joint, Volume 2, 13-16 Oct. 1999 Page(s):881 vol.2

[4] C. Toumazou, F.J. Lidgey and C.A. Makris “Extending voltage-mode op amps to current-mode performance” IEE Proceedings, Vol. 137, Pt. G, No. 2, April I990
[5] A. Sedra and K. C. Smith, “A Second-Generation Current Conveyor and Its Applications” IEEE Transactions Circuit Theory, February 1970
[6] Kimmo Koli and Kari A. I. Halonen, ”CMRR Enhancement Techniques for Current-Mode Instrumentation Amplifiers”, IEEE Trans. on CAS, Vol. 47, No. 5, May 2000
[7] Seyed Javad Azhari and Hossien Fazlalipoor, “A Novel Current Mode Instrumentation Amplifier (CMIA) Topology” IEEE Transactions on Instrumentation AND Measurement, Vol. 49, No. 6, December 2000
[8] E.L.Douglas, D.F. Lovely, and D.M. Luke “A Low-voltage Current-Mode Instrumentation Amplifier Designed in a 0.18-Micron CMOS Technology “ CCECE 2004-CCGEI, Niagara Falls, May 2004
[9] E. Abou-Allam and E.I. El-Masry, “High CMRR CMOS current operational amplifier” Electronics Letters, 23rd June 7994 Vol. 30 No. 73
[10] Pietro Andreani,and Sven Mattisson, “On the Use of Nauta’s Transconductor in
Low-Frequency CMOS gm C Bandpass Filters” IEEE Journal Of Solid-State Circuits, Vol. 37, No. 2, February 2000
[11] B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, pp. 142–153, Feb.1992.

[12]
Lin, C.-H.; Pimenta, T.; Ismail, M “A low-voltage low-power CMOS V-I converter with rail-to-rail differential input for filtering applications” Electronics, Circuits and Systems, 1998 IEEE International Conference on Volume 1, 7-10 Sept. 1998 Page(s):165 - 168 vol.1
[13] J. F. Duque-Canillo, G. Torelli, R. PCrez-Aloe. J. M. Valverde, and F. Maloberti “Fully Differential Basic Building Blocks Based on Fully Differential Difference Amplifiers with Unity-Gain Difference Feedback “IEEE Transactions On Circuit And Systems-I: Fundamental Theory And Applications, Vol. 42, No. 3, March 1995
[14] Carvajal, R.G.; Ramirez-Angulo, J.; Lopez-Martin, A.J.; Torralba, A.; Galan, J.A.G.; Carlosena, A.; Chavero, F.M., “The flipped voltage follower: a useful cell for low-voltage low-power circuit design ” IEEE Transactions On Circuits And Systems-I: Volume 52, Issue 7, July 2005 Page(s):1276 - 1291
[15] Soliman A. Mahmoud and Ahmed M. Soliman “The Differential Difference Operational Floating Amplifier: A New Block for Analog Signal Processing in MOS Technology” IEEE Transactions On Circuit And Systems—II: Analog And Digital Signal Processing, Vol. 45, No. 1, January 1998
[16] Qiuting Huang and Christian Menolli “A 200nV Offset 6.5nV/JHz Noise PSD 5.6kHz Chopper Instrumentation Amplifier in Igm Oigital CMOS” IEEE international Solid-State Circuits Conference 2001
[17] Christian Hristian C. Enz, Eric A. Vittoz and Fran~Ois Krummenacher “A CMOS Chopper Amplifier” IEEE Journal Of Solid-State Circuits, Vol. Sc-22, No. 3, June 1987
[18] Anton Bakker, Kevin Thiele’,and Johan Iiuijsing “A CMOS Nested Chopper Instrumentation Amplifier with 100nV Offset” IEEE International Solid-state Circuits Conference 2000
[19] Paul D. Walker, and Michael M. Green, “An Approach to Fully Differential Circuit Design without Common-Mode Feedback” IEEE Transactions On Circuits And Systems-II: Analog And Digital Signal Processing, Vol. 43, No. 11 , November 1996
[20] Sukhum Luikitmongkol, Wandee Petchmaneelumka, Vanchai Riemja, Chaleompun Wangwiwattana, and Amphawan Chaikla “A Low-voltage CMOS Instrumentation Amplifier” SICE 2003Annual Conference Volume 3, 4-6 Aug. 2003 Page(s):2995 - 2998 Vol.3
[21] Jordi Sacrist’an, Ma Teresa Os’es ‘Low Noise Amplifier For Recording ENG Signals In Implantable System” Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on Volume 4, 23-26 May 2004 Page(s):IV - 33-6 Vol.4
[22] Michel S. J. Steyaert, Willy M. C. Sansen, and Chang Zhongyuan “A Micropower Low-Noise Monolithic Instrumentation Amplifier For Medical Purposes” IEEE IEEE Journal Of Solid-State Circuits, Vol. Sc-22, No. 6, December1987
[23] C. Toumazou, F.J. Lidgey and C.A. Makris “Extending voltage-mode op amps to current-mode performance” IEE Proceedings, Vol. 137, Pt. G, No. 2, April I990
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top