跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭嘉笙
研究生(外文):Chia-Sheng Peng
論文名稱:無線應用之正交頻分多工傳收器設計
論文名稱(外文):OFDM Transceiver Design for Wireless Applications
指導教授:溫�堜�
指導教授(外文):Kuei-Ann Wen
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:152
中文關鍵詞:正交頻分多工無線通訊傳收器無線區域網路
外文關鍵詞:OFDMwireless communicationtransceiverwireless LAN
相關次數:
  • 被引用被引用:2
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對應用於無線通訊系統之正交頻分多工(OFDM)技術,考量實作通訊系統傳輸的背景,包含通道、射頻以及傳輸規格,討論無線傳輸通道的影響效應和模型的建置方法、採用直接轉換的射頻架構所造成的非理想效應、基頻與射頻的相關介面討論,以及不同傳輸規格之設計考量。並針對無線區域網路所需之規範,提出相關之偵測、估計、同步、等化與解調等演算法及其效能分析,研究成果係針對不同通道與射頻效應所需,包含封包偵測(Packet Detection)、自動增益控制(AGC)、時脈偵測(Symbol Timing Detection)、載波頻率漂移(CFO)的估計與補償、通道的估計與等化、以及頻域上的相位追蹤等部分。在架構上提出以雙模座標旋轉數位計算器(CORDIC)為核心的設計,整合與簡化內部接收器(Inner Receiver)所需所有同步與等化之電路,針對多徑通道所造成的衰減效應,提出採用通道狀態資訊(CSI)之Demapping設計,有效降低所需的平均訊雜比以增加傳輸距離,並提出符合無線區域網路基頻的完整設計,從傳送端、前端接收器、內部接收器、FFT到外部接收器,有效降低全部的接收延遲至280 cycles,低於4個OFDM symbols的長度,以提高有效的傳輸量,經0.18um CMOS製程的cell library合成,共約42.4萬等效邏輯閘,且全部電路毋須使用RAM的設計,有利於未來整合於SOC的設計。在模擬與驗證考量上,提出以應用整合平台,模擬通道、射頻等環境,並納入Verilog實作電路的共同模擬,驗證實作系統的傳輸品質並有利於系統內部資料流與控制信號的偵錯工作,經由模擬與效能分析,以及實作系統針對傳輸品質與信號偵錯等驗證,得到8種實際電路的傳輸率及其效能結果,經由相關比較,可證實為高效能的設計以及其採用CSI對抗多徑通道的接收能力。
The dissertation presents a comprehensive design of OFDM transceiver for wireless applications, including system consideration, receiver technology, architecture, and evaluation. Wireless channel environments and RF nonideal effects have been considered for OFDM transmission. Novel methods for building wireless channel models have been introduced, including of delay spread interpolation and fader generators. The interface between baseband and RF, and the consideration over different transmission specifications have been also presented. For Wireless LAN system requirement, several receiver technologies are proposed for solving the effects caused from channels and RF environments, including packet detection, automatic gain control, symbol timing detection, detection and compensation of carrier frequency offset, channel estimation and equalization, and frequency-domain phase tracking. For implementing a baseband transceiver which accommodates to Wireless LAN systems, an architecture based on a dual-mode CORDIC module is proposed to integrate and reduce calculations of synchronization and equalization in the inner receiver; moreover, for some subcarriers suffering from severer attenuations under frequency-selective fading channels, a novel demapping method which adopts channel state information (CSI) and combines with OFDM equalizer is presented to decrease average SNR and increase transmission distance. The full implementation of baseband transceiver comprises transmitter, front-end processing, inner receiver, FFT/IFFT, and outer receiver, with total receiving latency as 280 clock cycles, less than 4 OFDM symbols duration, and with total complexity as about 424K equivalent gate count, benefiting in SOC integration by avoiding any usage of RAM components in the design. An integrated simulation platform is introduced with abilities to co-simulate channels and RF environments with practical Verilog codes for evaluating transmission performances over AWGN and multipath fading channels. According to simulation and evaluation results, 8 kinds of transmission rates with their required SNR and packet error rate (PER) are proposed and compared to prove the performance of the OFDM transceiver design.
摘要 i
Abstract ii
誌謝 iv
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 INTRODUCTION TO OFDM 3
1.2.1 DFT/IDFT and Over-sampling 5
1.2.2 Guard Interval and Cyclic Extension 7
1.2.3 Windowing 10
1.2.4 Polarity of Pilot Subcarriers 12
1.2.5 Signal Flow of OFDM Baseband Transceiver 12
CHAPTER 2 SYSTEM CONSIDERATION FOR WIRELESS OFDM TRANSCEIVERS 14
2.1 MULTIPATH FADING CHANNEL MODELS 15
2.1.1 Mathematical Channel Model 15
2.1.2 Simulation of Multipath Channel Models 18
2.1.3 Generation of Independent Fading Waveforms 27
2.1.4 Summary 37
2.2 RF FRONT-END 40
2.2.1 DAC and LPF 43
2.2.2 PA and PAPR 44
2.2.3 Frequency Synthesizer, CFO and Phase noise 48
2.2.4 VGA and AGC 51
2.2.5 ADC and DAC and SCO 53
2.2.6 Noise and System Link Analysis 55
2.2.7 RF Controller and Interface 58
2.2.8 Other Effects of Direct-conversion 58
2.3 PACKET-BASED OFDM SYSTEM 59
2.3.1 WLAN 802.11a Packet Format 60
2.3.2 UWB Packet Format 62
CHAPTER 3 TECHNOLOGY FOR PACKET-BASED OFDM RECEIVER 63
3.1 PACKET DETECTION AND AUTOMATIC GAIN CONTROL 63
3.1.1 Packet Detection Function 64
3.1.2 Digital Automatic Gain Control 79
3.2 SYMBOL TIMING DETECTION 82
3.3 CFO ESTIMATION AND COMPENSATION 88
3.4 CHANNEL ESTIMATION AND EQUALIZATION 91
3.5 PHASE TRACKING 94
3.6 PERFORMANCE ANALYSIS OF OFDM EQUALIZER OVER FADING CHANNELS 96
3.6.1 Fixed Channel Response 98
3.6.2 Rayleigh Fading Channel 104
CHAPTER 4 ARCHITECTURE FOR CORDIC-BASED OFDM RECEIVER 108
4.1 RECEIVER FRONT-END PROCESSING 111
4.2 CORDIC-BASED ARCHITECTURE 113
4.2.1 Design of Dual-mode CORDIC Module 113
4.2.2 Modified CSI-based Demapping 116
4.2.3 Other Considerations of Implementation 122
4.3 IMPLEMENTATION 124
CHAPTER 5 SIMULATION AND EVALUATION FOR OFDM TRANSCEIVER 126
5.1 SIMULATION AND EVALUATION ENVIRONMENT 129
5.2 SIMULATION RESULTS 131
5.3 HDL CO-SIMULATION 135
5.4 EVALUATION OF DESIGN PERFORMANCE 139
CHAPTER 6 CONCLUSIONS 142
6.1 SUMMARY 142
6.2 RECOMMENDATIONS FOR FUTURE WORKS 144
[1] R. van Nee and R. Prasad, OFDM Wireless Multimedia Communications, Artech House, Boston, 2000.
[2] H. Meyr, M. Moeneclaey, S.A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing, John Wiley & Sons, New York, 1997.
[3] T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall PTR, NJ, 1996.
[4] J. G. Proakis, Digital Communications, 3rd ed., McGrawHill, New York, 1995.
[5] B. Sklar, Digital Communications: Fundamentals and Applications, Prentice Hall PTR, NJ, 1988.
[6] G. L. St�佒er, Principles of Mobile Communication, Kluwer Academic Publishers, Norwell, 1996.
[7] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, New York, 2005.
[8] W. C. Jakes, Microwave Mobile Communications, Wiley, 1974. Reprinted by IEEE Press in 1994.
[9] IEEE, “Wireless LAN Medium Access Control and Physical Layer specifications: High-speed physical layer in the 5 GHz band,” P802.11a/D7.0, July 1999.
[10] ETSI, “Digital Video Broadcasting: Framing Structure, Channel coding, and Modulation for Digital Terrestrial Television,” EN 300-744 V1.5.1, June 2004.
[11] ETSI, “Radio transmission and reception,” GSM 05.05 V5.2.0, 1996.
[12] ETSI, “Channel Models for HIPERLAN/2 in Different Indoor Scenarios,” EP BRAN 3ER1085B 30 March, 1998.
[13] B. Sklar, “Rayleigh fading channels in mobile digital communication systems .I. Characterization,” IEEE Communications Magazine, Vol. 35, Issue 7, pp. 90-100, July 1997.
[14] P. Dent, G. E. Bottomley, and T. Croft, “Jakes fading model revisited,” Electronics Letters, vol. 29, no. 13, pp. 1162–1163, June 1993.
[15] Y. Li, and X. Huang, “The simulation of independent Rayleigh faders,” IEEE Trans. on Communications, vol. 50, no. 9, pp. 1503-1514, Sept. 2002.
[16] Agilent Technologies, Advanced Design System (ADS) documentations.
http://eesof.tm.agilent.com/
[17] B. Razavi, RF Microelectronics, Prentice Hall PTR, NJ, 1998.
[18] H. Komurasaki et al., “A 1.8-V Operation RF CMOS Transceiver for 2.4-GHz-Band GFSK Applications,” IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 817-824, May 2003.
[19] P. Zhang et al., “A 5-GHz direct-conversion CMOS transceiver,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2232-2238, Dec. 2003.
[20] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed., Prentice Hall, NJ, 1998.
[21] K. Feher, Wireless Digital Communications: Modulation and Spread Spectrum Applications, Prentice Hall PTR, NJ, 1995.
[22] A. R. Behzad et al., “A 5-GHz Direct-Conversion CMOS Transceiver Utilizing Automatic Frequency Control for the IEEE 802.11a Wireless LAN Standard,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2209-2220, No.12, Dec. 2003.
[23] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital Receivers, Plenum Press, New York, 1997.
[24] J. Y. C. Cheah, Practical Wireless Data Modem Design, Artech House, MA, 1999.
[25] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Addison Wesley, 1995.
[26] B. Razavi, “Design Considerations for Direct Conversion Receivers,” IEEE Transaction on Circuits and System-II, vol. 44, pp. 428-435, June 1997.
[27] R. Ahola et al., “A Single-Chip CMOS Transceiver for 802.11a/b/g Wireless LANs,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2250-2258, Dec. 2004.
[28] ETSI, “Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” EN 300 401 V1.3.3 May 2001.
[29] ETSI, “Broadband Radio Access Networks (BRAN); HIPERLAN Type 2 Technical Specification Part 1- Physical Layer,” DTS/BRAN030003-1, Oct. 1999.
[30] A. Batra et al., “Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a,” IEEE P802.15-03/268r3, March 2004.
[31] IEEE, “Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Std. 802.16, Oct. 2004.
[32] T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Transactions on Communications, vol. 43, no. 234, pp. 191-193, April 1995.
[33] C. R. N. Athaudage, “BER sensitivity of OFDM systems to time synchronization error,” in Proc. of the 8th International Conference on Communication Systems, vol. 1, pp. 42-46, Nov. 2002.
[34] B. Come et al., “Impact of front-end non-idealities on bit error rate performance of WLAN-OFDM transceivers,” in Proc. of Radio and Wireless Conference, pp. 91-94, Sept. 2000.
[35] J. Geier, Wireless LANs: Implementing High Performance IEEE 802.11 Networks, 2nd ed., Sams Publishing, Indiana, 2002.
[36] E. A. Lee and D. G. Messerschmitt, Digital Communication, 2nd ed., Kluwer Academic Publishers, Boston, 1990.
[37] P. H. Moose, “A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction,” IEEE Transactions on Communications, vol. 42, no. 10, pp. 2908-2914, Oct. 1994.
[38] J. J. van de Beek, M. Sandell and P. O. B�宁jesson, “ML Estimation of Time and Frequency Offset in OFDM Systems,” IEEE Transactions on signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.
[39] M. Speth, D. Daecke and H. Meyr, “Minimum Overhead Burst Synchronization for OFDM Based Broadband Transmission,” in Proc. of GlobeComm, vol. 5, pp. 2777-2782, Nov. 1998.
[40] W. Lee, H. Park, and J. Park, “Viterbi decoding method using channel state information in COFDM system,” IEEE Trans. on Consumer Electronics, vol. 45, no. 3, pp. 533-537, Aug. 1999.
[41] M. H. Hsieh and C. H. Wei, “Channel Estimation for OFDM Systems Based on Com-type Pilot Arrangement in Frequency Selective Fading Channels,” IEEE Transactions on Consumer Electronics, vol. 44, no. 1, pp. 217-225, Feb. 1998.
[42] R. Van Nee, “A new OFDM standard for high rate wireless LAN in the 5 GHz band,” in Proc. of Vehicular Technology Conference, vol. 1, pp. 258-262, Sept. 1999.
[43] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, pp. 51-55, Sams Publishing, Indianapolis, 2002.
[44] T. M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,” IEEE Transaction on Communications, vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
[45] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal processing,” IEEE Signal Processing Magazine, vol. 9, pp. 16-35, 1992.
[46] H. Zhana, Z. Wang, and S. S. Chandra, “Implementation of frequency offset correction using CORDIC algorithm for 5 GHz WLAN applications,” in Proc. of ICCS, vol. 2, pp. 983-987, 2002.
[47] M. R. G. Butler et al., “Viterbi decoding strategies for 5 GHz wireless LAN systems,” in Proc. of Vehicular Tech. Conference, pp. 77-81, 2001.
[48] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM-Part I,” IEEE Trans. on Communications, vol. 47, no. 11, pp. 1668-1677, Nov. 1999.
[49] J. Thomson et al., “An Integrated 802.11a Baseband and MAC Processor,” in Proc. of ISSCC, vol. 1, pp. 126-451, Feb. 2002.
[50] T. Fujisawa et al., “A Single-Chip 802.11a MAC/PHY with a 32-b RISC Processor,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 2001-2009, Nov. 2003.
[51] C. S. Peng and K. A. Wen, “Synchronization for Carrier Frequency Offset in Wireless LAN 802.11a System,” in Proc. of WPMC 2002, Volume: 3, 27-30 Oct. 2002
[52] H. Tang, K. Y. Lau, and R. W. Brodersen, “Synchronization schemes for packet OFDM system,” in Proc. of ICC, vol. 5, pp. 3346-3350, May 2003.
[53] F. Manavi and Y. R. Shayan, “Implementation of OFDM modem for the physical layer of IEEE 802.11a standard based on Xilinx Virtex-II FPGA,” Proc. of VTC, vol. 3, pp. 1768-1772, Spring 2004.
[54] J. E. Salt and H. H. Nguyen, “Performance analysis of a frame detection algorithm for burst mode communications,” Proc. of WCNC, vol. 1, pp. 571-576, March 2005.
[55] C. S. Peng, Y. S. Chuang, K. A. Wen, “CORDIC-based architecture with channel state information for OFDM baseband receiver,” IEEE Trans. on Consumer Electronics, vol. 51, no. 2, pp. 403-412, May 2005.
[56] H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I, John Wiley & Sons, New York, 1968.
[57] E. T. Lee and J. W. Wang, Statistical Methods for Survival Data Analysis, John Wiley & Sons, New Jersey, 2003.
[58] M. K. Simon, Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers and Scientists, Kluwer Academic Publishers, Boston, 2002.
[59] ECMA, “High Rate Ultra Wideband PHY and MAC Standard,” Standard ECMA-368, 1st ed., Dec. 2005.
[60] H. Kobayashi, “A novel symbol frame and carrier frequency synchronization for burst mode OFDM signal,” Proc. of IEEE VTC’00, vol.3, pp.1392-1396, Sept. 2000.
[61] S. Weinstein and P. Ebert, “Data transmission by frequency division multiplexing using the discrete fourier transform,” IEEE Trans. Commun. Techn., vol. COM-19, pp.628-634, Oct. 1971.
[62] C.S. Peng, C.H. Cho and K.A. Wen, “Frame and Symbol Synchronization for WLAN-OFDM Systems,” in Proc. of 4th European Wireless Conference, vol. 2, pp. 835-839, Feb. 2002.
[63] J. Li, G. Liu, and G. B. Giannakis, “Carrier Frequency Offset Estimation for OFDM-Based WLANs,” IEEE Signal Processing Letters, Vol. 8, No. 3, pp. 80-82, March 2001.
[64] ModelSim, http://www.model.com/
[65] W. Li, Z. Wang, Y. Yan and M. Tomisawa, ”An efficient low-cost LS equalization in COFDM based UWB systems by utilizing channel-state-information (CSI),” in Proc. of VTC-2005, vol. 4, pp. 2167-2171, Sept. 2005.
[66] Y. Wang, J.H. Ge, B. Ai; P. Liu and S.Y. Yang, “A soft decision decoding scheme for wireless COFDM with application to DVB-T,” IEEE Trans. on Consumer Electronics, vol. 50, pp. 84-88, Feb. 2004.
[67] W.C. Lee, H.M. Park, K.J. Kang and K.B. Kim, “Performance analysis of Viterbi decoder using channel state information in COFDM system,” IEEE Trans. on Broadcasting, vol. 44, pp. 488-496, Dec. 1998.
[68] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” in Proc. of ICC 2002, vol. 2, pp. 664-668, May 2002.
[69] M. Rahriema and Y.Antia, “Optimum soft decision decoding with channel state information in the presence of fading,” in IEEE Communications Magazine, vol. 35, no. 7, pp. 110-111, July 1997.
[70] D.F. Yuan, A. Sui and F. Zhang, “Soft decision decoding of punctured convolutional codes in Rayleigh fading channels,” in Proc. of APCCAS 2000, pp. 22-24, Dec. 2000.
[71] V.D. Nguyen and H.P. Kuchenbecker, “Block interleaving for soft decision Viterbi decoding in OFDM systems,” in Proc. of VTC 2001, vol. 1, pp. 470-474, Fall, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top