跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴泰翔
研究生(外文):Tai-Hsiang Lai
論文名稱:長脈衝傳輸線觸波技術及其在積體電路電纜放電防護上之應用
論文名稱(外文):Long-Pulse Transmission Line Pulsing Technique for Cable Discharge Event (CDE) Protection in CMOS Integrated Circuits
指導教授:柯明道柯明道引用關係
指導教授(外文):Ming-Dou Ker
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:電纜放電事件脈衝傳輸縣處波技術
外文關鍵詞:Cable Discharge Event (CDE)Transmission Line Pulsing (TLP)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:795
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:1
電纜放電(Cable Discharge Event, CDE)已是造成網路介面積體電路損傷的主要原因。而在靜電放電(Electrostatic Discharge, ESD)防護元件之耐受能力測試中,傳輸線脈衝產生系統(Transmission Line Pulsing System, TLP)是觀測元件在靜電轟擊下電性特徵最重要的方法。一方面為了解電纜放電防護元件之物理特性,另一方面更能在晶片製作完成之初,能先了解產品之電纜放電的承受能力。於是本篇論文利用架設的長脈衝傳輸線脈衝產生系統去模擬電纜放電對測試元件的影響,並用來量測和分析電纜放電防護元件之二次崩潰特性,然後再與傳統的傳輸線脈衝產生系統進行比較。透過新提出的長脈衝傳輸線脈衝系統(Long-Pulse Transmission Line Pulsing System, LP-TLP)和傳統的傳輸線脈衝產生系統對元件進行測試後,發現元件對電纜放電耐受度比起人體放電模式(Human Body Model, HBM)靜電放電耐受度明顯降低。
Cable discharge event (CDE) has been the main cause which damages the Ethernet interface. The transmission line pulsing (TLP) system has been the most important method to observe the electric characteristics of the device under human-body-model (HBM) ESD stress. To understand the physical characteristics and CDE robustness of protection device in the wafer level, the long-pulse transmission line pulsing (LP-TLP) system has been set up and used to simulate the influence of CDE on the Ethernet integrated circuits and to measure and analyze the secondary breakdown characteristics of the CDE protection devices. Furthermore, the measured results by using the LP-TLP system are compared with those by using the traditional 100-ns TLP system. The experimental results have shown that the CDE robustness of NMOS and PMOS devices in deep-submicron CMOS technology is much worse than their HBM ESD robustness.
CONTENTS
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) iii
ACKNOWLEDGEMENT vi
CONTENTS vii
TABLE CAPTIONS ix
FIGURE CAPTIONS x
Chapter 1 Introduction 1
1.1 BACKGROUND 1
1.2 THESIS ORGANIZATION 2
Chapter 2 Cable Discharge Test 5
2.1 CDE IN ETHERNET LOCAL AREA NETWORK 5
2.2 DISCHARGE BETWEEN LAN CABLING AND EQUIPMENT 6
2.3 SUMMARY 7
Chapter 3 Long-Pulse TLP (LP-TLP) Measurement Setup 13
3.1 TRADITIONAL TRANSMISSION LINE PULSING (TLP) SYSTEM 13
3.2 NEW LONG-PULSE TRANSMISSION LINE PULSING (LP-TLP) SYSTEM 13
3.2.1 Measurement setup of the proposed LP-TLP 13
3.2.2 Verification on LP-TLP with a Load of 50-W Resistor 15
3.2.3 Verification on Gate-Grounded NMOS (GGNMOS) 15
3.3 SUMMARY 16
Chapter 4 Dependence of Layout Parameters on CDE Robustness of CMOS Devices 25
4.1 NMOS/PMOS IN A 0.25-mm SALICIDED CMOS PROCESS 25
4.1.1 Channel Width 26
4.1.2 Channel Length 27
4.1.3 Unit-Finger Width 28
4.1.4 Spacing from Source Contact to Poly-Gate Edge 29
4.1.5 SAB Width 30
4.1.6 Failure Analysis 31
4.2 NMOS/PMOS IN A 0.18-mm SALICIDED CMOS PROCESS 32
4.2.1 Clearance from SAB to Poly-Gate Edge 32
4.2.2 Distance from drain diffusion to Guard Ring Edge 33
4.3 COMPARISON BETWEEN 0.25-mm AND 0.18-mm CMOS PROCESSES 34
4.4 SCR DEVICE IN A 0.18-mm CMOS PROCESS 35
4.4.1 Lateral SCR (LSCR) 36
4.4.2 Modified Lateral SCR (MLSCR) 37
4.5 APPLICATION OF LP-TLP SYSTEM 38
4.6 SUMMARY 41
Chapter 5 Conclusions and Future Works 60
5.1 MAIN RESULTS OF THIS THESIS 60
5.2 FUTURE WORKS 61
REFERENCES 62
VITA 64
[1]K. Chatty, P. Cottrell, R. Gauthier, M. Muhammad, F. Stellari, A. Weger, P. Song, and M. McManus, “Model-based guidelines to suppress cable discharge event (CDE) induced Latchup in CMOS ICs,” in Proc. IEEE International Reliability Physics Symp., 2004, pp.130-134.
[2]R. Brooks, “A simple model for a cable discharge event,” IEEE 802.3 Cable Discharge Ad-hoc, March 2001. (http://www.ieee802.org/3/ad_hoc/copperdis/ public/docs/cable_discharge_model1.pdf).
[3]J. Deatherage and D. Jones, “Multiple factors trigger cable discharge events in ethernet LANs,” Electronic Design, vol. 48, no. 25, pp. 111-116, Dec., 2000. (http://www.elecdesign. com/Articles/ArticleID/4991/4991.html).
[4]Intel Corporation, “Cable discharge event in local area network environment,” White Paper, Order No: 249812-001, July 2001.
[5]“Cabling ESD Study,” IEEE 802.3 Cable Discharge Ad-hoc, March 2001. (http://www. ieee802.org/3/ad_hoc/copperdis/ public/docs/index.html).
[6]Telecommunications Industry Association (TIA), Category 6 Cabling: Static Discharge Between LAN Cabling and Data Terminal Equipment, Category 6 Consortium, Dec. 2002.
[7]H. Geski, “DVI compliant ESD protection to IEC 61000-4 2 level d Standard,” in Conformity, Sept. 2004, pp. 12-17.
[8]EIA/JEDEC Standard No. 78, “IC Latch-Up Test,” Electronic Industries Association, 1997.
[9]Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test, International Standard IEC 61000-4-2, 1995.
[10]T. J. Maloney and N. Khurana, “Transmission line pulsing techniques for circuit modeling of ESD phenomena,” in Proc. EOS/ESD Symp., 1985, pp. 49-54.
[11]R. Ashton, “Modified transmission line pulse system and transistor test structures for the stuffy of ESD,” in Proc. IEEE International Conference on Microelectronic Test Structures, Vol. 8, pp. 127-132, 1995. [12]J. C. Lee, R. Young. J. J. Liou, G. D. Croft, and J. C. Bernier, “An improved transmission line pulsing (TLP) setup for electrostatic discharge (ESD) testing in semiconductor devices ICs,” in Proc. IEEE International Conference on Microelectronic Test Structures, Vol. 14, pp. 233-238, 2001.
[13]J. Barth, K. Verhaege, L. G. Henry, and J. Richner, “TLP calibration, correction, standards, and new techniques,” IEEE Trans. on Electronics Packaging Manufacturing, vol. 24, pp. 99-108, 2001.
[14]S. G. Beebe, “Methodology for layout design and optimization of ESD protection transistors,” in Proc. EOS/ESD Symp., 1996, pp. 265-275.
[15] C. H. Diaz, T. E. Kopley, and P. J. Marcoux, “Building-in ESD/EOS Reliability for sub-halfmicron CMOS process,” in Proc. of IEEE International Reliability Physics Symposium, 1995, pp.276-283.
[16] T.-Y. Chen and M.-D. Ker, “Analysis on the dependence of layout parameters on ESD robustness of CMOS devices for manufacturing in deep-submicron CMOS process,” IEEE Trans. on Semiconductor Manufacturing, vol. 16, pp. 486-500, Aug. 2003.
[17]T.-Y. Chen and M.-D. Ker, “Experimental investigation on the HBM ESD characteristics of CMOS devices in a 0.35�慆 silicided process,” in Proc. International Symposium on VLSI Technology, System, and Application, 1999, pp.35-38.
[18]R. N. Rountree, “ESD protection for submicron CMOS circuits: issues and solutions,” in IEDM Tech. Dig., 1998, pp. 580-583.
[19]M.-D Ker and C.-Y. Wu, “Complementary-SCR ESD protection circuit with interdigitated finger-type layout for input pads of submicron CMOS IC’s,” IEEE Trans. Electron Devices, vol. 42, pp.1297-1304, 1995.
[20]J. Wu, P. Juliano, and E. Rosenbaum, “Breakdown and latent damage of ultra-thin gate oxides under ESD stress conditions,” in Pro. EOS/ESD Symp., 2000, pp. 287-295.
[21]C. Duvvury and R. Rountree, “A synthesis of ESD input protection scheme,” in Pro. EOS/ESD Symp., 1991, pp. 88-97.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top