跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/03 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈宛儀
研究生(外文):Wan-Yi Shen
論文名稱:低電壓製程之電荷幫浦電路設計
論文名稱(外文):Design of Charge Pump Circuit in Low-Voltage CMOS Process With Consideration on Gate-Oxide Reliability
指導教授:柯明道柯明道引用關係
指導教授(外文):Ming-Dou Ker
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:91
中文關鍵詞:電荷幫浦電路閘極氧化層可靠度電荷傳遞開關
外文關鍵詞:charge pump circuitgate-oxide reliabilitycharge transfer switches
相關次數:
  • 被引用被引用:0
  • 點閱點閱:562
  • 評分評分:
  • 下載下載:190
  • 收藏至我的研究室書目清單書目收藏:1
USB-OTG (On-The-Go)使得USB廣泛應用於現在的產業中,而USB-OTG電路需要高電壓與高電流驅動能力,在USB兩用OTG設備收發器(USB On-The-Go dual-role transceiver)中,電荷幫浦電路(charge pump circuit)將被用來提供USB兩用OTG設備收發器作為A設備(A-Device)時,VBUS所需之功率以及VBUS訊號。在本篇論文中,提出了兩種低電壓製程之電荷幫浦電路設計,除了提供高電壓與高電流驅動力,亦可解決閘極氧化層可靠度的問題。
藉由使用新的時序方波以及電荷傳遞開關(charge transfer switches)來實現論文中所提出的兩種新電路,除了能加強電荷幫浦電路每級的幫浦增益,解決閘極氧化層可靠度的問題,亦可解決舊有電路中,在方波上升或下降時間的回漏現象。
此外,當VBUS的輸出負載電流變動時,其輸出電壓值亦受影響而隨之改變,而在電荷幫浦電路中,時序方波頻率的快慢,將影響輸出電壓的高低。於是我們藉由回授電路來控制電壓控制震盪器(voltage-controlled oscillator)的頻率,進而控制電荷幫浦電路的輸出電壓維持在我們想要的準位。
Recent applications like USB OTG (On-The-Go) require not only the high voltage level but also high current drivability. The internal charge pump circuit of the USB On-The-Go dual-role transceiver supplies VBUS power and signaling that is required by the transceiver. In this thesis, two kinds of design of charge pump circuit in low-voltage CMOS process with consideration on gate-oxide reliability are presented. The two designs of charge pump circuit can also provide high voltage level and high current drivability.
In order to enhance the pumping gain of each stage, it is necessary that charge transfer switches must be used in the two proposed charge pump circuits. We use new clock control signals to implement the two kinds of charge pump circuits in thesis. This method may not only dealing the gate-oxide reliability but also solving the back leakage effect in the rise or fall time of the clock signals in the old charge pump design.
In order to deal the variation of the output voltage value causing by the change of the output current loading, we will add the feedback loop to the charge pump circuit. By controlling the frequency of the voltage-controlled oscillator (VCO) in the feedback loop, we will tune the output voltage of the charge pump circuit to the voltage level we want.
During the initial pumping state, the voltage value of output is very small, so we let the frequency of the voltage-controlled oscillator circuit to be fast. This method can speed up the pumping progress and let the output voltage achieve the level we want quickly. After the pumping progress, the voltage value of output might be higher than we want, so we let the frequency of the voltage-controlled oscillator circuit to be slow. This method can lower the pumping efficiency let the output voltage maintain the level we want. If the voltage value of output is lower than what we want, we will let the frequency of the voltage-controlled oscillator circuit to be fast. And we can know that this circulation will last constantly when there exist the variation of the output voltage.
ABSTRACT(CHINESE) i
ABSTRACT(ENGLISH) ii
ACKNOWLEDGEMENT iv
CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 1
Chapter 2 Background 3
2.1 Introduction of USB OTG 3
2.2 Operation of USB OTG Device 3
2.3 USB OTG Dual-Role Transceiver 6
Chapter 3 Prior Art 11
3.1 Dickson Charge Pump Circuit 11
3.2 Review of CMOS Charge Pump Circuits 15
3.2.1 Floating-Well Charge Pump Circuits 15
3.2.2 Source-Bulk Connected Charge Pump 16
3.2.3 Charge Transfer Switches (CTS’s) Charge Pump 17
3.2.4 Charge Pump for Low Supply Voltages 18
3.2.5 Charge Pump without Gate-Oxide Reliability Issue 20
Chapter 4 New Charge Pump Circuit Dealing with Gate-Oxide Reliability Issue in Low Voltage Processes 26
4.1 Consideration of Charge Pump Circuit Design 26
4.1.1 Drawback of The Design Method (I) 26
4.1.2 Drawback of The Design Method (II) 28
4.2 A Proposed Charge Pump Circuit (I) 29
4.2.1 The Description of This Design 30
4.2.2 Body Connection of Branches in This Design 32
4.3 A Proposed Charge Pump Circuit (II) 34
4.3.1 Drawback of The Design Method (III) 35
4.3.2 The Description of This Design 35
Chapter 5 New Charge Pump Circuit Dealing with The Feedback Loop 45
5.1 Oscillators 45
5.1.1 Voltage-Controlled Oscillator 45
5.1.2 Ring Oscillator 46
5.1.3 Single-Ended Coupled Ring Oscillator 47
5.2 Comparators 48
5.2.1 Differential-Input Comparator 49
5.2.2 Source-Coupled Differential-Pair Comparator 49
5.3 Charge Pump Circuit with Feedback 51
Chapter 6 Simulation and Measurement 56
6.1 Proposed Charge Pump Circuit (I) 56
6.2 Proposed Charge Pump Circuit (II) 57
6.3 Proposed Charge Pump Circuit (II) with Feedback Loop 58
Chapter 7 Conclusion and Future Work 82
7.1 Conclusion 82
7.2 Future Work 83
REFERENCES 89
VITA 91
[1] On-the-Go Supplement to the USB 2.0 Specification, Revision 1.0, USB Implementers Forum, Inc. (USB-IF), 2003.
[2] J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. 11, pp. 374–378, Jun. 1976.
[3] K.-H. Choi, J.-M. Park, J.-K. Kim, T.-S. Jung, and K.-D. Suh, “Floating-well charge pump circuits for sub-2.0V single power supply flash memories,” in Symp. VLSI Circuits Dig. Tech. Papers, 1997, pp. 61–62.
[4] J. Shin, I.-Y. Chung, Y. J. Park, and H. S. Min, “A new charge pump without degradation in threshold voltage due to body effect,” IEEE J. Solid-State Circuits, vol. 35, pp. 1227–1230, Apr. 2000.
[5] J.-T. Wu and K.-L. Chang, “MOS charge pump for low-voltage operation,” IEEE J. Solid-State Circuits, vol. 33, pp. 592–597, Apr. 1998.
[6] H. Lin, K.-H. Chang, and S.-C. Wong, “Novel high positive and negative pumping circuits for low supply voltage,” in Proc. IEEE Int. Symp. Circuits Syst., 1999, vol. I, pp. 238–241.
[7] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “A new charge pump circuit dealing with gate-oxide reliability issue in low-voltage processes,” in Proc. IEEE Int. Symp. Circuits Syst., 2004, vol. I, pp. 321–324.
[8] H. Lin and N.-H. Chen, “New four-phase generation circuits for low-voltage charge pumps,” in Proc. IEEE Int. Symp. Circuits Syst., 2001, vol. I, pp. 504–507.
[9] Behzad Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Higher Education, 2001.
[10] Liang Dai, Ramesh Harjani, Design of High Performance CMOS Voltage Controlled Oscillators. Boston: Kluwer Academic Publishers,c2002.
[11] Roubik Gregorian, Introduction to CMOS OP-AMPs and Comparators. A Wiley-Interscience Publication.
[12] C. Lauterbach, W. Weber, and D. Rőmer, “Charge sharing concept and new clocking scheme for power efficiency and electromagnetic emission improvement of boosted charge pumps,” IEEE J. Solid-State Circuits, vol. 35, pp. 719–723, May 2000.
[13] S.-Y. Lai and J.-S. Wang, “A high-efficiency CMOS charge pump circuit,” in Proc. IEEE Int. Symp. Circuits Syst., 2001, vol. IV, pp. 406–409.
[14] K. Sawada, Y. Sugawara, and S. Masui, “An on-chip high-voltage generator circuit for EEPROMs with a power supply voltage below 2V,” in Symp. VLSI Circuits Dig. Tech. Papers, 1992, pp. 75–76.
[15] J. S. Witters, G. Groeseneken, and H. E. Maes, “Analysis and modeling of on-chip high-voltage generator circuit for use in EEPROM circuits,” IEEE J. Solid-State Circuits, vol. 24, pp. 1372–1380, Oct. 1989.
[16] T. Tanzawa and T. Tanaka, “A dynamic analysis of the Dickson charge pump circuit,” IEEE J. Solid-State Circuits, vol. 32, pp. 1231–1240, Aug. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top