跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建廷
研究生(外文):Chien-Ting Liu
論文名稱:同調耦合彎折B型抗諧振反射光波導之設計、研製與特性量測
論文名稱(外文):Design, Fabrication and Characterization of ARROW-B Based Coherently Coupled Bending Waveguides
指導教授:黃遠東黃遠東引用關係
指導教授(外文):Yang-Tung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:60
中文關鍵詞:同調耦合彎折B型抗諧振反射光波導
外文關鍵詞:coherently coupled bendingARROW-B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究同調耦合彎折B型抗諧振反射光波導(ARROW-B),包括其設計、元件製作與特性量測。B型抗諧振反射光波導結構可傳輸橫向電場偏極化(TE)及橫向磁場偏極化(TM)的基模光波,具有較大的入射導光區,可與單模光纖有效耦合。同調耦合效應發生在具有多段的彎折結構,由於每段長度會影響到能量傳輸效率,各段長度適當選擇可於彎折波導有效傳輸光訊號。本研究利用多層膜傳輸矩陣理論和有效折射係數法來分析及設計B型抗諧振反射光波導結構,並以波束傳輸法來模擬彎折結構特性,設計了在矽基片上將光橫向偏移500微米、總彎折角度為4.8度及8度的彎曲波導。總彎折角度為4.8度時,TE模態和TM模態的彎折傳輸效率分別為0.722 (1.41 dB)和0.763 (1.17 dB);總彎折角度為8度時,TE模態和TM模態的彎折傳輸效率分別為0.642 (1.92 dB)和0.718 (1.44 dB)。實際製作出所設計的元件,量測其總彎折角度為4.8�a時,TE模態和TM模態的彎折傳輸效率分別為0.398 ~ 0.435 (3.62 ~ 4.00 dB)和0.415 ~ 0.484 (3.15 ~ 3.82 dB);總彎折角度為8�a時,TE模態和TM模態的彎折傳輸效率分別為0.332~0.382 (4.18 ~ 4.79 dB)和0.385~0.410 (3.87 ~ 4.14 dB)。
In our investigations, we design the ARROW-B based bending waveguides with the total lateral shift equaling 500 μm by coherent coupling effect. The ARROW-B structure can guide light with the fundamental mode of TE and TM polarizations. The large core size can provide efficient coupling with single-mode fibers. Coherent coupling effect occurs in a bending structure of successive sections. Due to the influence of the interconnection length on power transmission efficiency, proper length should be chosen to obtain a high transmission efficiency. The transfer matrix method and effective index method were used to analyze the ARROW-B structures. The beam propagation method was used to simulate the performance of the bending waveguide. Finally, we designed the ARROW-B based waveguides with 0.8°×10 and 0.8°×6 bending angles at the operating wavelength 0.6328 μm. The designed bending transmission efficiency of TE and TM modes are 0.722 (1.41 dB) and 0.763 (1.17 dB) for the total bending angle equaling 4.8°; 0.642 (1.92 dB) and 0.718 (1.44 dB) for the total bending angle equaling 8°, respectively. After fabrication and measurement, the measured bending transmission efficiency of TE and TM modes are 0.398 ~ 0.435 (3.62 ~ 4.00 dB) and 0.415 ~ 0.484 (3.15 ~ 3.82 dB) for the total bending angle equaling 4.8°; 0.332 ~ 0.382 (4.18 ~ 4.79 dB) and 0.385 ~ 0.410 (3.87 ~ 4.14 dB) for the total bending angle 8°, respectively.
1 Introduction 1
2 Methods for Analysis 3
2.1 Transfer Matrix Method . . . . . . . . . . . . . 3
2.1.1 TE Modes . . . . . . . . . . . . . . . . . . . 5
2.1.2 TM Modes . . . . . . . . . . . . . . . . . . . 8
2.2 Beam Propagation Method . . . . . . . . . . . . . . . .. . . . . . 10
2.3 E¤ective Index Method . . . . . . . . . . . . 12
3 ARROW-B Waveguides 14
3.1 Characteristics of an ARROW-B . . . . . . . . 16
3.2 Design of an ARROW-B Structure . . . . . . . 17
4 ARROW-B Based Coherently Coupled Bending Waveguides 23
4.1 Coherent Coupling E¤ect . . . . . . . . . . . 23
4.1.1 Introduction . . . . . . .. . . . . . . . . 23
4.1.2 Theoretical Analysis . . . . . . . . . . . 24
4.2 Ridge ARROW-B Waveguides . . . . . . . . .. . 28
4.3 ARROW-B Based Bending Waveguides . . . . . . 29
5 Fabrication Processes of the ARROW-B Based Bending Waveguides 41
5.1 Deposition of the Cladding layers and the Core Layer . . . . . . . . . . . 43

5.2 Lithography Process . . . . . . . . . . . . . 45
5.3 Etching Process . . . . . . . . . . . . . . . 46
5.4 Fabrication Results . . . . . . . . . . . . . 46
6 Expermental Results and Discussion 48
6.1 Experimental System Setup . . . . . . . . . . . . . . . . 48
6.2 Measurement of Propagation Loss . . . . . . . . .. . . . . . . . 49
6.3 Measurement of the Bending Transmission E¢ ciency . . . . . . . . . . . 51
6.4 The Experimental Results . . . . . . . . . . 51
6.5 Discussion . . . . . . . . . . . . . . . . . 54
7 Conclusion 56
L.D. Hutcheson, Ian A. White, and James J. Burke, "Comparison of Bending Losses in Integrated Optical Circuits," Opt. Soc. Amer., vol. 5, no. 6, pp. 276-278, 1980.
D. Marcuse, "Length Optimization of an S-Shaped Transition Between Offset Optical Waveguides," Appl. Opt., vol. 17, no. 5, pp. 763-768, 1978.
L. M. Johnson and D. Yap, "Theoretical Analysis of Coherently Coupled Optical Waveguide Bends," App. Opt., vol. 23, no. 17, pp. 2988--2990, 1984.
D. Yap and L. M. Johnson., "Coupling Between Successive Ti:LiNbO₃ Waveguide Bends and Branches," Appl. Opt., vol. 23, no. 17, pp. 2991--2999, 1984.
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO₂-Si multilayer structures," Appl. Phys. Lett., vol. 49, no. 1, pp. 13--15, 1986.
T. Baba and Y. Kokubun, "New Polarization-Insensitive Antiresonant Reflecting Optical Waveguide (ARROW-B)," IEEE Photon. Technol. Lett., vol. 1, no 8, pp. 232--234, 1989.
H. Nishihara, M. Haruna T. Suhara, Optical integrated circuit, McGraw-Hill Companies, Inc., New York, 1985.
T. Tamir (Ed.) et al., Guided-wave optoelectronics, Springer-Verlag, 1990.
R. M. Knox and P. P. Toulios, "Integrated Circuits for Millimeter Through Optical Frequency Region," in Proc. MRI Symp. Submillimeter Waves, J. Fox, Ed. Brooklyn: Ploytechnic Press, pp. 497--516, 1970.
Katsunari Okamoto, Fundamentals of Optical Waveguides, Academic Press, 2000.
E. A. J. Marcatili, "Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics," Bell Syst. Tech. J., vol. 48, no. 9, pp. 2017--2102, 1969.
G. B. Hocker, and W. K. Burns,"Mode Dispersion in Diffused Channel Waveguides by Effective Index Method," Appl. Opt., vol. 16, no. 1, pp. 113-118, 1977.
W. P. Huang, A. Nathan, R. M. Shubair, and Y. L. Chow. "The Modal Characteristics of ARROW Structures," IEEE J. of Lightwave Technol., vol. 10, no. 8, pp. 1015-1022, 1992.
T. Baba, and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides---numerical results and analytical expressions," IEEE J. Quantum Electron, vol. 28, no. 7, pp. 1689--1700, 1992.
Edward D. Palik, Handbook of Optical Constants of Solids II, Academic Press, 1991.
H. F. Taylor, "Power Loss at Directional Change in Dielectric Waveguides," Appl. Opt., vol. 13, no.3, pp. 642--647, 1974.
H. F. Taylor, "Losses at Corner Bends in Dielectric Waveguides," Appl. Opt., vol. 16, no.3, pp. 711--716, 1977.
H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, Singpore, 2001.
L. M. Johnson and F. J. Leonberger, "Low-Loss LiNbO₃ Waveguide Bends with Coherent Coupling," Opt. Soc. Amer., vol. 8, no. 2, pp. 111--113, 1983.
S. Kawakami and K. Baba, "Field Distribution near an Abrupt Bend in Single-Mode Waveguides: a Simple Model," Appl. Opt., vol. 24, no. 21, pp. 3643--3647, 1985.
J. J. Su and W. S. Wang, "Novel Coherently Coupled Multisectional Bending Optical Waveguide," IEEE Photon. Technol. Lett. , vol. 14, no 8, pp. 1112--1114, 2002.
Toshihiko Baba and Yasuo Kokubun, "Scattering Loss of Antiresonant Reflecting Optical Waveguides," J. of Lightwave Technol., vol. 9, no. 5, pp. 590-597, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文