跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昱佑
研究生(外文):Yu-yu Lin
論文名稱:在磁場中,於一存在位能障的量子通道中的同調傳輸
論文名稱(外文):Coherent transport through potential barriers in a quantum channel in magnetic field
指導教授:朱仲夏
指導教授(外文):Chon-Saar Chu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:141
中文關鍵詞:磁場量子霍爾效應邊緣態
外文關鍵詞:magnetic fieldwireedge statequantum hall effectmagnetoconduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們試著將所能得到的在量子導線的磁導率增促到高磁場的範圍。我們使用了兩種不同的方法、模態匹配近似法及Lippmann-Schwinger方程式的部分富立葉轉換近似方法、來交互比對確定我們的結果。接著我們對對穿透率、波函數、及電流密度作圖並解釋其中邊緣態的現象。經由比較比較磁場的迴旋半徑及通道的等效寬度,提供了一個簡單度量邊緣態產生的方法。

在通道含有一個排斥力的雜質時,我們在次能帶底部之上可以發現一個凹陷。而在吸引的雜質時,則在入射能量低於次能帶底部的地方發現兩個凹陷。我們也會討論邊緣態跟衰減態的現象。
In this thesis, we try to push our theoretical description of
magnetotransport in a quantum wire to the high magnetic field
regime. Two different approaches, namely, the mode matching approach and the partial Fourier transformation of the Lippmann-Schwinger equation approach, have been employed to cross check our results. We have plotted the transmission, the wavefunction, and the current density patterns and have interpreted them in light of the edge states. A simple criteria for the formation of edge states is reached, which is arisen from the comparison of the cyclotron radius and the effective width of the wire. For the case of a single repulsive barrier, a transmission dip is found at the threshold of a subband. For the case of a single attractive barrier, two transmission dips are found for incident energy that lies below a subband threshold. These are discussed in terms of the edge states and the evanescent modes.
Contents
Abstract in English i
Abstract in Chinese ii
Acknowledgement iii
Contents vi
List of Figures xii
1 Introduction and background 1
2 Introduction to Landauer-BÄuttiker formula and our physical model 6
2.1 Landauer-BÄuttiker formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Our physical model and formulation . . . . . . . . . . . . . . . . . . . . . . 9
3 Mode-matching (MM) method 14
3.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Normalization constant and evanescent mode . . . . . . . . . . . . . . . . . 17
3.3 Mode-matching approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Current density and conservation condition . . . . . . . . . . . . . . . . . . 26
3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Summary and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 An approach of partial Fourier transformation of the Lippmann-Schwinger
(PFTLS) equation 36
4.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Scattering matrix method . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Wavefunction and current density . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 Comparing the numerical results from the MM and PFTLS approaches 54
5.1 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Wavefunction and current pattern . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6 Magnetoconduction in quantum channel with a repulsive barrier 62
6.1 Tuning of the magnetic ‾eld . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Tuning of the barrier strength . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Analyses of numerical results and physical interpretations . . . . . . . . . . 64
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7 Magnetoconduction in quantum channel with an attractive barrier 73
7.1 Tuning of the magnetic ‾eld . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Tuning of the barrier strength . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Analyses of numerical results and physical interpretations . . . . . . . . . . 79
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8 Concluding remarks 89
9 Possible future works 92
9.1 Double and multiple barriers . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A Detail of the integrations 97
Bibliography 123
Bibliography
[1] H. van Houten, C. W. J. Beenakker, and B. J. van Wees, in Semiconductors and
Semimetals, edited by M. A. Reed (Academic, New York, 1990), Vol. 35, p. 9.
[2] G. Timp, in Semiconductors and Semimetals, edited by M. A. Reed (Academic, New
York, 1990), Vol. 35, p. 113.
[3] C. W. J. Beenakker and H. van Houten, in Solid State Physics: Advances in Research
and Applications, edited by H. Ehrenreich and D. Turnbull (Academic, New York,
1992), Vol. 44, p. 1.
[4] Y. Hirayama, T. Saku and Y. Horikoshi, Phys. Rev. B 39, 5535 (1989).
[5] J. Faist, P. Guµeret and H. Rothuizen, Phys. Rev. B 42, 3217 (1990).
[6] G. L. Timp and R. E. Howard, Proc. IEEE 79, 1188 (1991) .
[7] J. Masek and B. Kramer, Z. Phys. B 75, 37 (1989).
[8] J. Masek, P. Lipavsky and B. Kramer, J. Phys. Condens. Matter. 1, 6395 (1989).
[9] D. van Marel and E. G. Haanapel, Phys. Rev. B 39, 7811 (1989).
[10] P. L. McEuen, B. W. Alphenaar, R. G. Wheeler and R. N. Sacks, Surf. Sci. 229, 312
(1990).
[11] I. Kander, Y. Imry and U. Sivan, Phys. Rev. B 41, 12941 (1990).
[12] C. S. Chu and R. S. Sorbello, Phys. Rev. B 40, 5941 (1989).
[13] P. F. Bagwell, Phys. Rev. B 41, 10354 (1990).
[14] E. Tekman and S. Ciraci, Phys. Rev. B 42, 9098 (1990).
[15] A. Kumar and P. F. Bagwell, Phys. Rev. B 43, 9012 (1991).
[16] A. Kumar and P. F. Bagwell, Phys. Rev. B 44, 1747 (1991).
[17] A. Kumar and P. F. Bagwell, Solid State Commun. 75, 949 (1990).
[18] J. A. Nixon, J. H. Davies and H. U. Baranger, Phys. Rev. B 43, 12638 (1991).
[19] Y. B. Levinson, M. I. Lubin and E. V. Sukhorukov, Pis ¶ma Zh. Eksp. Teor. Fiz. 54,
405 (1991) [JETP Lett. 54, 401 (1991)].
[20] Y. B. Levinson, M. I. Lubin and E. V. Sukhorukov, Phys. Rev. B 45, 11936 (1992).
[21] M. W. Dellow, P. H. Beton, C. J. G. Langerak, T. J. Foster, P. C. Main, L. Eaves, M.
Henini, S. P. Beamount, and C. D. W. Wilkinson, Phys. Rev. Lett. 68, 1754 (1992).
[22] M. Buttiker, Phys. Rev. B. 38,9375 (1988)
[23] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[24] The Quantum Hall E®ect, edited by P. R. Prange and S. M. Girvin (Springer-Verlag,
New York, 1990).
[25] T. Chakraborty and P. PietilÄainen, The Quantum Hall E®ects: Integral and Frac-
tional (Springer-Verlag, Berlin, 1995).
[26] A. H. MacDonald, in Mesoscopic Quantum Physics, edited by E. Akkermans, G.
Montambaux, J.-L. Pichard, and J. Zinn-Justin, Proceedings of the 1994 Les Houches
Summer School, Session LXI (Elsevier, Amsterdam, 1995), p. 659.
[27] K. I. Wysokinski, Eur. J. Phys. 21, 535 (2000).
[28] T. Koma, Rev. Math. Phys. 16, 1115 (2004).
[29] J. K. Jain and S. A. Kivelson, Phys. Rev. B 37, 4276 (1988).
[30] P. H. M. van Loosdrecht, C. W. J. Beenakker, H. van Houten, J. G. Williamson, B.
J. van Wees, J. E. Mooij, C. T. Foxon, and J. J. Harris, Phys. Rev. B 38, 10162
(1988).
[31] F. M. Peeters, Phys. Rev. Lett. 61, 589 (1988).
[32] G. Kirczenow, Phys. Rev. Lett. 62, 1920 (1989); 62, 2993 (1989); Phys. Rev. B 42,
5357 (1990).
[33] D. G. Ravenhall, H. W. Wyld, and R. L. Schult, Phys. Rev. Lett. 62, 1780 (1989);
R. L. Schult, H. W. Wyld, and D. G. Ravenhall, Phys. Rev. B 41, 12760 (1990).
[34] H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D. Stone, Phys. Rev. B
44, 10637 (1991).
[35] A. H. MacDonald and P. Streda, Phys. Rev. B 29, 1616 (1984).
[36] W. Zawadzki, Semicond. Sci. Technol. 2, 550 (1987);
[37] O. Z. Olendskii, Fiz. Tverd. Tela (S.-Peterburg) 34, 3087 (1992) [Sov. Phys. Solid
State 34, 1653 (1992)].
[38] C. S. Kim and O. Olendski, Appl. Phys. Lett. 69, 2575 (1996); Semicond. Sci. Technol.
12, 788 (1997).
[39] U. Fano, Phys. Rev. 124, 1866 (1961).
[40] J. U. NÄockel, Phys. Rev. B 46, 15348 (1992).
[41] R. Akis, P. Vasilopoulos, and P. Debray, Phys. Rev. B 56, 9594 (1997).
[42] P. Duclos, P. Exner, and B. Meller, Rep. Math. Phys. 47, 253 (2001).
[43] V. Vargiamidis and H. M. Polatoglou, Phys. Rev. B 67, 245303 (2003).
[44] V. Gudmundsson, Y.-Y. Lin, C.-S. Tang, V. Moldoveanu, J. H. Bardarson, and A.
Manolescu, Phys. Rev. B 71, 235302 (2005).
[45] J. U. NÄockel and A. D. Stone, Phys. Rev. B 51, 17219 (1995).
[46] C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 60, 2406 (1988)
[47] R. E. Prange and T.-W. Nee, Phys. Rev. 168, B779 (1968).
[48] M. S. Khaikin, Adv. Phys. 18, 1 (1969).
[49] B. R. Snell, K. S. Chan, F. W. Sheard, L. Eaves, G. A. Toombs, D. K. Maude, J. C.
Portal, S. J. Bass, P. Claxton, G. Hill, and M. A. Pate, Phys. Rev. Lett. 59, 2806
(1987) .
[50] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[51] P. Streda, J. Kurcera, and A. H. MacDonald, Phys. Rev. Lett. 59, 1973 (1987) .
[52] M. L. Roukes, A. Scherer, S. J. Allen, Jr., H. G. Craighead, R. M. Ruthen, E. D.
Beebe, and J. P. Harbison, Phys. Rev. Lett. 59, 3011 (1987) .
[53] R. E. Prange, Phys. Rev. 171, B737 (1968).
[54] R. Landauer, IBM J. Res. Dev. 1,223(1957)
[55] R. Landauer, Phil. Mag. 21,863 (1970)
[56] P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S.Fisher, Phys. Rev. B 22,3519
(1980)
[57] A.D. Stone and A. Szafer, IBM J. Res. Dev. 32,384(1988)
[58] E.N. Economon and C.M. Soukoulis, Szafer, Phys. Rev. Lett. 46,618 (1981)
[59] Introduction to Mesoscopic Physics, Y.Imry (Oxford 1997), pp94
[60] M. Buttiker, Y.Imry, R.Landauer, and S.Pinhas, Phys. Rev. B 31,6207 (1985)
[61] M. Buttiker, Phys. Rev. Lett. 57,1761 (1986)
[62] A.D. Benoit, S. Washburn, C.P. Umbach, R. B. Laibowitz, and R.A. Webb, Phys.
Rev. Lett. 57,1765 (1986)
[63] U. Sivan and Y. Imry, Phys. Rev. B. 33, 551 (1986)
[64] Gradshteyn and Ryzhik's Table of Integrals, Series, and Products, Alan Je®rey and
Daniel Zwillinger(eds.), Sixth edition (July 2000)
[65] S.A. Gurvitz, Y.B. Levinson, Phys. Rev. B. 47, 10578 (1993)
[66] S.A. Gurvitz, Phys. Rev. B. 51, 7123 (1995).
[67] H. Tamura and T. Ando, Phys. Rev. B. 44, 1792 (1991).
[68] E.V. Sukhorukov and M.I. Lubin C. Kunze Y. Levinson, Phys. Rev. B. 49, 17191
(1994).
[69] Y. Takagaki and K. Ploog, Phys. Rev. B. 51, 7017 (1995).
[70] Vidar Gudmundsson, Yu-yu Lin, Chi-Shung Tang, Valeriu Moldoveanu, Jens Hjor-
leifur Bardarson, and Andrei Manolescu, Phys. Rev. B. 72, 235302 (2005).
[71] Shi-Shung Tang, Wing Wa Yu, and Vidar Gudmundsson, Phys. Rev. B. 72, 195331
(2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top