|
[1] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J.M. Cohn, “Managing power and performance for system-on-chip designs using voltage islands,” IEEE/ACM International Conference on Computer Aided Design, ICCAD 2002, pp. 195-202, 10-14 November, 2002. [2] T. Kam, S. Rawat, D. Kirkpatrick, R. Roy, G. S. Spirakis, N. Sherwani, and C.Peterson, “EDA challenges facing future microprocessor design,” IEEE Transactions on Computer Aided Design, vol. 19, pp. 1498-1506, Dec. 2000. [3] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, and V. De, “Dynamic sleep transistor and body bias for active leakage power control of microprocessors,” IEEE Journal of Solid-State Circuits, vol.38, no. 11, pg. 1838-1845, November 2003. [4] J. Tschanz, Y. Ye, L. Wei, V. Govindarajulu, N. Borkar, S. Burns, T. Karnik, S. Borkar, and V. De, “Design optimizations of a high performance microprocessor using combinations of dual-Vt allocation and transistor sizing,” in Symp. VLSI Circuits Dig. Tech. Papers, 2002, pp. 218–219. [5] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, M. Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai, “A 0.9-V, 150-MHz, 10-mW, 4mm , 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1770–1779, Nov. 1996. [6] Calhoun, B., F. Honore, A. P. Chandrakasan, "A Leakage Reduction Methodology for Distributed MTCMOS," IEEE Journal of Solid-State Circuits, pp. 818-826, May 2004. [7] V. Kursun and E. G. Friedman, " Sleep Switch Dual Threshold Voltage Domino Logic with Reduced Standby Leakage Current," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 5, pp. 485-496, May 2004. [8] Kao, J., A. P. Chandrakasan, "Dual-Threshold Techniques for Low-Power Digital Circuits," IEEE Journal of Solid-State Circuits, pp. 1009-1018, July 2000. [9] S. Thompson, I. Young, J. Greason, and M. Bohr, “Dual threshold voltages and substrate bias: keys to high performance, low-power, 0.1 _m logic designs,” in Symp. VLSI Technology Dig. Tech. Papers, 1997, pp. 69–70. [10] S. Narendra, A. Keshavarzi, B. A. Bloechel, S. Borkar, and Vivek De, “Forward Body Bias for Microprocessors in 130-nm Technology Generation and Beyond,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 696-701, May 2003. [11] L. T. Clark, E. J. Hoffman, J. Miller,M. Biyani, Y. Liao, S. Strazdus, M. Morrow, K. E. Velarde, and M. A. Yarch, “An embedded 32b microprocessor core for low-power and high-performance applications,” IEEE J. Solid-State Circuits, vol. 36, pp. 1599–1608, Nov. 2001. [12] W. K. Yeh, S. M. Chen, Y. K. Fang (2004)“Substrate Noise-Coupling Characterization and Efficient Suppression in CMOS Technology”, IEEE T-Electron Device, Vol. 51, No.5, pp.817-827 [13] http://www.cic.org.tw [14] J. Hu, Y. Shin, N. Dhanwada and R. Marculescu, “Architecting Voltage Islands in Core-based System-on-a-Chip Designs,” in Proc. ISLPED, oo.180-185, Aug. 2004. [15] K. A. Bowman, S. G. Duvall, and J. D. Meindl, “Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 278–279. [16] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2002, pp. 422–423. [17] J. Tschanz et. al., "Effectiveness of adaptive supply voltage and body bias for reducing impact of parameter variations in low power and high performance microprocessors," IEEE Journal of Solid-State Circuits, pp. 826--829, May 2003. [18] Kao, J., A. P. Chandrakasan, "Dual-Threshold Techniques for Low-Power Digital Circuits," IEEE Journal of Solid-State Circuits, pp. 1009-1018, July 2000. [19] Calhoun, B., F. Honore, A. P. Chandrakasan, "A Leakage Reduction Methodology for Distributed MTCMOS," IEEE Journal of Solid-State Circuits, pp. 818-826, May 2004. [20] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS,” IEEE Journal of Solid-State Circuits, pp. 847–854, August 1995. [21] H. Kawaguchi, K. Nose, and T. Sakurai, “A CMOS scheme for 0.5 V supply voltage with pico-ampere standby current,” IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 192–193. [22] L. M. Franca-Neto, P. Party, M. P. Ly, R. Rangel, S. Suthar, T. Syed, B. Bloechel, S. Lee, C. Burnett, D. Cho, D. Kau, A. Fazio and K. Soumyanath, “Enabling High-Performance Mixed-Signal System-on-a-Chip (SoC) in High Performance Logic CMOS Technology,” IEEE VLSI Circuit Symposium, June, 2002
|