跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明崇
研究生(外文):Lee Ming Chung
論文名稱:整合於超大型積體電路標準單元設計流程的低功率技術
論文名稱(外文):An Implementation of Integrable Low Power Techniques for Modern Cell-Based VLSI Design
指導教授:闕河鳴闕河鳴引用關係
指導教授(外文):Herming Chiueh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:44
中文關鍵詞:標準單元低功率基極偏壓漏電流功率開關
外文關鍵詞:Cell Baselow powerbody biasleakagepower switch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
隨著VLSI技術的不斷進步,功率消耗逐漸變成一個亟需解決的問題。同時,由於降低工作電壓使得漏電流在CMOS奈米製程中漸漸宰制了總功率消耗,因此如何有效的控制功率消耗以及抑制漏電流(Leakage)現象成了在奈米製程中相當重要的課題。在這一篇論文之中提出了使用目前可應用的電子自動化(EDA)軟體分別實踐電壓分離(Voltage Separation),基極偏壓(Body Bias),和功率閘(Power Switch)三項低功率電路技術。藉由電子自動化軟體的協助,這些低功率技術可以有效地快速整合至標準單元設計流程(Cell-Based Design Flow)中。利用電壓分離,適合的電壓可以分配到對應的功能單元(Functional Unit)中,以避免提供過高的電壓導致過剩的功率浪費。基極偏壓利用偏壓電晶體(Transistor)中的基極(Body)以調整啟動電壓(Threshold Voltage),因為漏電流多寡與啟動電壓呈指數反比關係,所以可藉由調整適合的啟動電壓值控制漏電流大小。功率閘主要是在電路與供應電壓源之間的串接一個電壓開關,當電路進入閒置時,功率閘將開啟以切斷於供應電壓源之間的連接,由一些文獻中得知功率閘對於漏電流可以達到有效的抑止。藉由將低電壓技術整合於實體設計流程(Physical Design Flow),可以實現帶有低功率技術特徵的電路。因此,此篇論文提供了可利用標準胞元設計流程(Cell-Based Design Flow)實現低功率電路技術的機會。論文之中所有的驗證跟設計都是使用TSMC 0.18um製程技術在實體設計流程中實現。
As the scaling of VLSI process technology in this end of Moore’s Law era, power dissipation and design has become an important issue. At the same time, voltage scale down make leakage power gradually dominates the total power consumption in nano-scale CMOS technology. Therefore, how to control power consumption and diminish the leakage power is essential in nano-scale process. In this thesis, we implement three low power techniques, which are Voltage Separation, Body Bias and Power Switch, utilizing existent EDA tool. Using the benefit which is provided via EDA tool, these low power techniques can be integrated into cell-based design flow rapidly. By using Voltage Separation, each functional unit can be feed with appropriate voltage level and avoid the excess power consumption from over-supply voltage. Body Bias uses biasing the body terminal of transistor to adjust the threshold voltage. Because the magnitude of leakage current has a exponential relation with threshold voltage, reducing leakage current is possible by increase of threshold voltage of transistor. Power switch is connecting power supply source series with a transistor. When circuit is in idle mode, the power switch is disconnected from power supply source. A significant reduction on leakage current can be achieved via power switch. By embedding low power techniques into physical design flow. A design circuit with low power technique feature is available. Therefore, this thesis provides an opportunity to realize several low power techniques relied on Cell-Based method. All implementation and verification within this thesis is used TSMC 0.18-un technology in physical design flow.
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Organization 4
Chapter 2 Background 5
2.1 Voltage Separation 5
2.2 Body Bias 8
2.3 Power Switch 9
Chapter 3 Implementation 12
3.1 General Automatic Physical Design Flow 12
3.2 Physical Design Flow for Voltage Separation 15
3.3 Body Bias for Cell-Based Design Flow 18
3.3.1 Body Bias with Dual-Supply Standard Cell 18
3.3.2 Body Bias with General Standard Cell 21
3.4 Power Switch Implementation 24
Chapter 4 Implementation Results 28
4.1 Implementation Environment Setup 28
4.2 Physical Design Flow for Voltage Separation 30
4.3 Body Bias for Cell-Based Design Flow 33
4.3.1 Body Bias with Dual-Supply Standard Cell 33
4.3.2 Body Bias with General Standard Cell 35
4.4 Power Switch Implementation 37
4.5 Summary 39
Chapter 5 Conclusion and Future Work 41
5.1 Conclusion 41
5.2 Future Work 42
Bibliography 43
[1] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J.M. Cohn, “Managing power and performance for system-on-chip designs using voltage islands,” IEEE/ACM International Conference on Computer Aided Design, ICCAD 2002, pp. 195-202, 10-14 November, 2002.
[2] T. Kam, S. Rawat, D. Kirkpatrick, R. Roy, G. S. Spirakis, N. Sherwani, and C.Peterson, “EDA challenges facing future microprocessor design,” IEEE Transactions on Computer Aided Design, vol. 19, pp. 1498-1506, Dec. 2000.
[3] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, and V. De, “Dynamic sleep transistor and body bias for active leakage power control of microprocessors,” IEEE Journal of Solid-State Circuits, vol.38, no. 11, pg. 1838-1845, November 2003.
[4] J. Tschanz, Y. Ye, L. Wei, V. Govindarajulu, N. Borkar, S. Burns, T. Karnik, S. Borkar, and V. De, “Design optimizations of a high performance microprocessor using combinations of dual-Vt allocation and transistor sizing,” in Symp. VLSI Circuits Dig. Tech. Papers, 2002, pp. 218–219.
[5] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, M. Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai, “A 0.9-V, 150-MHz, 10-mW, 4mm , 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1770–1779, Nov. 1996.
[6] Calhoun, B., F. Honore, A. P. Chandrakasan, "A Leakage Reduction Methodology for Distributed MTCMOS," IEEE Journal of Solid-State Circuits, pp. 818-826, May 2004.
[7] V. Kursun and E. G. Friedman, " Sleep Switch Dual Threshold Voltage Domino Logic with Reduced Standby Leakage Current," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 5, pp. 485-496, May 2004.
[8] Kao, J., A. P. Chandrakasan, "Dual-Threshold Techniques for Low-Power Digital Circuits," IEEE Journal of Solid-State Circuits, pp. 1009-1018, July 2000.
[9] S. Thompson, I. Young, J. Greason, and M. Bohr, “Dual threshold voltages and substrate bias: keys to high performance, low-power, 0.1 _m logic designs,” in Symp. VLSI Technology Dig. Tech. Papers, 1997, pp. 69–70.
[10] S. Narendra, A. Keshavarzi, B. A. Bloechel, S. Borkar, and Vivek De, “Forward Body Bias for Microprocessors in 130-nm Technology Generation and Beyond,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 696-701, May 2003.
[11] L. T. Clark, E. J. Hoffman, J. Miller,M. Biyani, Y. Liao, S. Strazdus, M. Morrow, K. E. Velarde, and M. A. Yarch, “An embedded 32b microprocessor core for low-power and high-performance applications,” IEEE J. Solid-State Circuits, vol. 36, pp. 1599–1608, Nov. 2001.
[12] W. K. Yeh, S. M. Chen, Y. K. Fang (2004)“Substrate Noise-Coupling Characterization and Efficient Suppression in CMOS Technology”, IEEE T-Electron Device, Vol. 51, No.5, pp.817-827
[13] http://www.cic.org.tw
[14] J. Hu, Y. Shin, N. Dhanwada and R. Marculescu, “Architecting Voltage Islands in Core-based System-on-a-Chip Designs,” in Proc. ISLPED, oo.180-185, Aug. 2004.
[15] K. A. Bowman, S. G. Duvall, and J. D. Meindl, “Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 278–279.
[16] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2002, pp. 422–423.
[17] J. Tschanz et. al., "Effectiveness of adaptive supply voltage and body bias for reducing impact of parameter variations in low power and high performance microprocessors," IEEE Journal of Solid-State Circuits, pp. 826--829, May 2003.
[18] Kao, J., A. P. Chandrakasan, "Dual-Threshold Techniques for Low-Power Digital Circuits," IEEE Journal of Solid-State Circuits, pp. 1009-1018, July 2000.
[19] Calhoun, B., F. Honore, A. P. Chandrakasan, "A Leakage Reduction Methodology for Distributed MTCMOS," IEEE Journal of Solid-State Circuits, pp. 818-826, May 2004.
[20] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS,” IEEE Journal of Solid-State Circuits, pp. 847–854, August 1995.
[21] H. Kawaguchi, K. Nose, and T. Sakurai, “A CMOS scheme for 0.5 V supply voltage with pico-ampere standby current,” IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers, Feb. 1998, pp. 192–193.
[22] L. M. Franca-Neto, P. Party, M. P. Ly, R. Rangel, S. Suthar, T. Syed, B. Bloechel, S. Lee, C. Burnett, D. Cho, D. Kau, A. Fazio and K. Soumyanath, “Enabling High-Performance Mixed-Signal System-on-a-Chip (SoC) in High Performance Logic CMOS Technology,” IEEE VLSI Circuit Symposium, June, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top