跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊亨
研究生(外文):Chen Chun-Heng
論文名稱:超寬頻通訊系統之降頻混頻器的設計與實現
論文名稱(外文):Design and Implementation of Down-Conversion Mixer for Ultra-Wide band Communication System
指導教授:陳富強陳富強引用關係
指導教授(外文):Chen Fu-Chiarng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:超寬頻混頻器1dB增益壓縮點轉換增益
外文關鍵詞:UWBMixerP1dBConversion gain
相關次數:
  • 被引用被引用:5
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文介紹了無線通訊系統中常用的射頻接收機系統架構及混頻器的參數介紹外,並藉由ABIDI於2000年所提出CMOS混頻器之雜訊模型,透過此模型將使電路設計者更清楚的了解到雜訊源將經由何種過程出現在混頻器的輸出端。另外,由於無線通訊系統的進步下,窄頻通訊系統已不符合時代潮流的需求,因此我們將研究如何修正及改良傳統的吉伯特混頻器,以符合未來之超寬頻無線通訊系統規格之要求。
由於CMOS製程在成本上佔有絕對的優勢,且具有極佳的系統整合能力,因此本論文以tsmc 0.18um 1P6M CMOS製程來實作1.5-2.5 GHz多規格之無線通訊的應用,以及符合3.1-10.6 GHz超寬頻無線通訊系統之頻段。由於tsmc提供了不錯的RF Model及ADS Design Kits,透過良好的設計及縝密的佈局後,在10 GHz以內均可能到相當平坦的轉換增益及良好的隔離度。最後,在考量到整體功率消耗及晶片面積下,採用微混頻器的設計理念下,將電路加以改良,並設計出以電阻匹配的超寬頻降頻微混頻器。
In this thesis, we introduce RF transceiver architectures for the wireless communication system and some parameters of the down-conversion mixer. By means of the noise model of RF-CMOS mixers presented by ABIDI in 2000, circuit designers will know how the noise appears at the output of a CMOS down-conversion mixer. Besides, due to the progress of the wireless communication system, narrow band system does not meet the need of the trend. The thesis shows how to improve and revise the conventional Gilbert Cell mixer to meet the spec for UWB applications.
Complementary Metal Oxide Semiconductor(CMOS) would be the most suitable technology for the wireless communication, attributed to its lower cost ,lower power and higher level of integration with baseband circuits. We implement 1.5-2.5 GHz multi-standard wireless applications and 3.1-10.6 GHz UWB application. Because of the stable RF model and accurate ADS Design Kits provided by tsmc, we get the measurement results with a flat conversion gain and good isolation. Moreover, under consideration of the power consumption and the chip area, we improve our architecture with input matching using resistive elements and finally design an ultra-wideband down-conversion mixer
摘要(中文) …………………………………………………………………………………ii
摘要(英文) …………………………………………………………………………………iii
誌謝……………………………………………………………………………………………iv
目錄……………………………………………………………………………………………v
表目錄 ………………………………………………………………………………………vii
圖目錄……………………………………………………………………………………… viii
第一章
導論
1.1 研究動機………………………………………………………………………………1
1.2 論文組織………………………………………………………………………………2
第二章
射頻接收機系統分析及參數介紹
2.1 簡介……………………………………………………………………………………4
2.2 射頻接收機架構………………………………………………………………………4
2.2.1 超外插接收機……………………………………………………………………4
2.2.1.1 鏡像干擾……………………………………………………………………5
2.2.1.2 半中頻的影響………………………………………………………………6
2.2.2 直接降頻接收機…………………………………………………………………7
2.3 混頻器設計參數介紹 ………………………………………………………………11
2.3.1 非線性效應 ……………………………………………………………………11
2.3.2 1dB增益壓縮點(P1dB) ………………………………………………………12
2.3.3 輸入三階截斷點 ………………………………………………………………13
2.3.4 阻隔與遲滯 ……………………………………………………………………15
2.3.5 非線性電路的串接效應 ………………………………………………………15
2.3.6 轉換增益/損耗…………………………………………………………………16
2.3.7 隔離度 …………………………………………………………………………16
2.3.8 雜訊指數 ………………………………………………………………………17
第三章
CMOS混頻器原理與雜訊模型之建立
3.1 簡介 ………………………………………………………………………………19
3.2 混頻器原理 ………………………………………………………………………19
3.2.1 被動式混頻器 ………………………………………………………………19
3.2.2 單平衡式混頻器 ……………………………………………………………20
3.2.3 雙平衡式混頻器 ……………………………………………………………22
3.3 CMOS 混頻器雜訊模型之建立……………………………………………………26
3.3.1 閃爍雜訊(Flicker noise)對輸出的影響…………………………………26
3.3.2 熱雜訊(thermal noise)對輸出的影響……………………………………34
3.4 混頻器參數之量測 ………………………………………………………………39
3.4.1 雜訊量測 ……………………………………………………………………39
3.4.2 P1dB、IIP3量測 ……………………………………………………………41
第四章
CMOS寬頻降頻混頻器之實作
4.1 簡介 ………………………………………………………………………………43
4.2 適用於1.5-2.5 GHz多規格之降頻混頻器 ……………………………………44
4.3 適用於3.1-10.6 GHz之CMOS降頻混頻器 ……………………………………57
4.4 寬頻匹配之Gilbert Cell降頻混頻器…………………………………………70
4.5 適用於3.1-10.6之降頻微混頻器………………………………………………78
第五章
結論 ………………………………………………………………………………………87
[1] A. Batra et al., “Multi-Band OFDM Physical Layer Proposal,” IEEE P802.15 working Group for WPANs, Jul. 2003.
[2] Behzad Razavi, “RF Microelectronics,” Prentice Hall, 2003
[3] 林明奇 “射頻吉伯特混頻器設計與實作”國立交通大學碩士論文,2004
[4] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,”
Cambridge University Press,2004
[5] 張維剛 “電子學(中)”鼎茂圖書, 2000
[6] Behzad Razavi,“Design Of Analog CMOS Integrated Circuits”McGraw-Hill
[7] Hooman Darabi and Asad A. Abidi, “Noise In RF-CMOS mixers a simple physical model”, IEEE Transaction of Solid-State Circuits, vol.35,No.1, PP.15-25, Jun.2000.
[8] Manolis T. Terrovitis, and Robert G. Meyer, “Noise in Current-Commutating CMOS Mixers” IEEE Journal of Solid-State Circuits, vol.34,No.6, PP.772-782, Jun.1999.
[9] D.K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier”, IEEE Journal of Solid-State Circuits, vol.32,No.5,PP.745-759,May 1997.
[10] Guillermo Gonzalez, “Microwave Transistor Amplifier Analysis and Design,” Prentice Hall, 1997
[11] Sangyoub Lee “DESIGN AND ANALYSIS OF ULTRA-WIDE BANDWIDTH IMPULSE RADIO RECIEVER” DOCTOR OF PHILOSOPHY , UNIVERSITY OF SOUTHERN CALIFORNIA,2002
[12] C. H. Tay, K. S. Yeo, J. G. Ma, and M. A. Do, “A 0.1–8 GHz ultrawideband
high performance mixer for low power applications,” in Proc. IEEE Asia
Pacific Microwave Conf., Nov. 2003, pp. 420–422.
[13] Tuan-Anh Phan,Chang-Wan Kim,Yun-A Shim and Sang-Gug Lee,“A High Performance CMOS Direct Down Conversion Mixer For UWB System” IEICE TRANS. No1,July 2005
[14] K. Kivekas, et al, “Design of Low Voltage Active Mixer for Direct Conversion Receivers”, IEEE International Symposium on Circuits and Systems (ISCAS), vol. 4, Jun. 2001.
[15] Q. Li, et al, “ Linearity Analysis and Design Optimization for 0.18 um CMOS RF Mixer”, IEE Proceedings of Circuits, Devices and Systems, vol. 149, no. 2, April. 2002.

[16] G. Roberto Aiello, “Challenges for Ultra-wideband (UWB) CMOS Integration”, IEEE IMS/RFIC Symposium, Jun. 2003.
[17] Andrea Bevilacqua and Ali M Niknejad, “An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Recevier,” ISSCC 2004
[18] Ming-Da Tsai, Huei Wang, “A 0.3-25-GHz Ultra-Wide-Band Mixer Using Commercial 0.18μm CMOS Technology,” IEEE microwave and Wireless Component Letters, November 2004
[19] Q. Li, et al, “Linearity Analysis and Design Optimization for 0.18μm CMOS RF Mixer,” IEE 2004
[20] Leonard A. MacEachern, et al., “A Charge-Injection Method for Gilbert Cell Biasing,” IEEE 1998
[21] C.C. Meng, S.S. Lu, M.H. Chiang and H.C. Chen “DC to 8 GHz 11 dB gain Gilbert micromixer using GalnP/GaAs HBT technology” IEE Electronics Letters,Vol.39 2003
[22] B. Gilbert,”The MICROMIXER: A Highly Linear Variant of the Gilbert Mixer
Using a Bisymmetric Class-AB Input Stage “, IEEE JSSC Vol. 32 pp.1412~1413,
Sept. 1997
[23] A. Ismail and A. Abidi, “A 3 to 10 GHz LNA Using a Wideband LC-ladder Matching Network,” ISSCC 2004
[24] Reinhold Ludwig and Pavel Bretchko,“RF Circuit Design Theory and Applications” Prentice Hall,2000
[25] David M. Pozar, “Microwave Engineering,” John Wiley Press,2004
[26] Eric A. M., et al, ”A CMOS Switched Transconductor Mixer,” IEEE JSSC 2004
[27] Anh-Tuan Phan, et al, “A High Performance CMOS Distributed Down Conversion Mixer for UWB System,” IEEE2004
[28] Bosen Tzeng, Chun-Hsien Lien, Huei Wang, Yu-Chi Wang, Pane-Chane Chao, Chung-Hsu Chen, “A 1-17-GHz InGaP-GaAs HBT MMIC Analog Multiplier and Mixer With Broad-band Input_matching Networks,” IEEE Transactions on Microwave and Techniques, Nov. 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top