跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐仕豪
論文名稱:應用於多頻帶正交分頻多工超寬頻系統之全積體化低功率快速鎖定整數型頻率合成器
論文名稱(外文):A Fully Integrated, Low Power, Fast-Locking, Integer-N Frequency Synthesizer for MB-OFDM UWB System
指導教授:周復芳
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:87
中文關鍵詞:多頻帶正交分頻多工超寬頻系統頻率合成器壓控震盪器除頻器相位頻率比較器充電幫浦迴路濾波器
外文關鍵詞:MB-OFDM UWBFrequency SynthesizerVoltage-Controlled OscillatorFrequency DividerPhase Frequency DetectorCharge PumpLoop Filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文中主要提出一個應用於之全積體化低功率快速鎖定整數型頻率合成器,另外還有一個寬頻壓控震盪器與其除頻電路,這兩個電路都是應用於多頻帶正交分頻多工超寬頻系統。
首先,利用台積電0.18微米互補式金氧半導體製程來實現一個寬頻壓控震盪器和其除頻電路,可以產生多頻帶正交分頻多工超寬頻系統的第一、第三和第四個頻帶群所需要的八個載波頻率。量測結果如下:可調頻寬為6122∼9149兆赫茲(壓控震盪器產生)與3061∼3930兆赫茲(除頻電路產生),在距離一兆赫茲處的相位雜訊為-105.5∼-115.1分貝/赫茲,總功率消耗為36.63毫瓦。
接下來也是利用台積電0.18微米互補式金氧半導體製程來實現一個低功率快速鎖定整數型頻率合成器,產生多頻帶正交分頻多工超寬頻系統的第三和第四個頻帶群所需要的六個載波頻率。其模擬結果如下:可調頻寬為6279∼9170兆赫茲,在距離一兆赫茲處的相位雜訊為-109.8∼-113.6分貝/赫茲,寄生雜頻較主頻低-34.2∼-55.5分貝,鎖定時間小於0.3微秒,正交相位誤差為3.1度,總功率消耗為46.35毫瓦。
In this thesis, a low power and fast-locking integer-N frequency synthesizer is introduced. Additionally, a wideband voltage-controlled oscillator (VCO) and its frequency divider are designed. These two circuits are both suitable for MB-OFDM UWB application.
First, the wideband VCO and its frequency divider are demonstrated. They are fabricated in TSMC 0.18 μm CMOS process. They can generate eight carrier frequencies in Band Group #1, #3, and #4. The measurement shows that the tuning range is 6122~9149 MHz from the VCO and 3061~3930 MHz from the divider. Moreover, the phase noise is -105.5~-115.1 dBc/Hz at 1 MHz offset and the total power dissipation is 36.63 mW.
Besides, the low power and fast-locking integer-N frequency synthesizer using TSMC 0.18 μm CMOS process is also described. It provides six carrier frequencies in Band Group #3 and #4. The simulated results are listed: the tuning range is 6279~9170 MHz, the phase noise is -109.8~-113.6 dBc/Hz at 1 MHz offset, the spurious tone is -34.2~-55.5 dBc, the locking time is less than 3 nsec, the I/Q phase mismatch is 3.1°, and total power dissipation is 46.35 mW.
Chinese Abstract...........................................I
English Abstract..........................................II
Acknowledgement..........................................III
Contents..................................................IV
List of Tables............................................VI
List of Figures..........................................VII

Chapter 1 Introduction.....................................1
1.1 Background and Motivation..............................1
1.2 Specification of the Frequency Synthesizer.............4
1.3 Thesis Organization....................................6

Chapter 2 Wideband Voltage-Controlled Oscillator and Its Frequency Divider for MB-OFDM UWB system...................8
2.1 Circuit Design Consideration...........................8
2.1.1 Multi-Band Voltage-Controlled Oscillator.............9
2.1.2 High Frequency Divider..............................15
2.1.3 2-to-1 Multiplexer..................................19
2.2 Chip Layout and Simulation Results....................20
2.3 Measurement Results...................................34
2.4 Summary and Comparison................................41

Chapter 3 Low Power and Fast-Locking Integer-N Frequency Synthesizer for MB-OFDM UWB System........................43
3.1 Architecture..........................................43
3.2 Circuit Design Consideration..........................45
3.2.1 Quadrature Voltage-Controlled Oscillator............48
3.2.2 Multi-Modulus Divider...............................51
3.2.3 Fast Phase-Frequency Detector.......................54
3.2.4 Charge Pump.........................................58
3.2.5 Loop Filter.........................................59
3.2.6 Wideband Output Buffer..............................62
3.3 Chip Layout and Simulation Results....................64
3.3.1 Behavior Simulation.................................65
3.3.2 Circuit Simulation..................................68
3.4 Summary and Comparison................................77

Chapter 4 Conclusions and Future Work.....................80
4.1 Conclusions...........................................80
4.2 Future Works..........................................81

Reference.................................................83

Publishing Remarks........................................87
[1] D. Porcino and W. Hirt, “Ultra-Wideband Radio Technology: Potential and Challenges Ahead,” IEEE Communication Magazine, vol. 41, pp. 66-74, July 2003
[2] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Communication Magazine, vol. 4, pp. 36-47, June 2003
[3] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a,” IEEE, Piscataway, NJ, IEEE P802.15-03/268r3-TG3a, Mar. 2004
[4] A. Batra et al., “Design of a Multiband OFDM System for Realistic UWB channel Environments,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 2123-2138, Sept. 2004
[5] C. Mishra et al., “Frequency Planning and Synthesizer Architectures for Multiband OFDM UWB Radios,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 3744-3756, Dec. 2005
[6] A. Karl, F. Behbahani, and A. A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” IEEE Custom Integrated Circuits Conference, pp. 555-558, May 1998
[7] C. S. Wang, S. W. Kao and P. C. Huang, “A low phase noise wide tuning range CMOS quadrature VCO using cascade topology,” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, pp. 138-141, August 2004
[8] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators. Kluwer Academic Publishers, 1999
[9] H. Sjoland, “Improved switched tuning of differential CMOS VCOs,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, pp. 352-355, May 2002
[10] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design. Kluwer Academic Publishers, 1998
[11] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, June 2001
[12] P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, June 2000
[13] H. R. Rategh, H. Samavati, and T. H. Lee, “A CMOS Frequency Synthesizer with a Injection-Locked Frequency Divider for a 5GHz Wireless LAN Receiver,” IEEE J. Solid-State Circuits, vol. 35, pp. 780-787, May 2000
[14] H. R. Rategh and T. H. Lee, Multi-GHz Frequency Synthesis & Division. Kluwer Academic Publishers, 2001
[15] B. De Muer and M. Steyaert, “A 12 GHz / 128 frequency divider in 0.25 μm CMOS,” European Solid-State Circuits Conference, pp.248-251, Sept. 2000
[16] Jri Lee, Jian-Yu Ding, and Tuan-Yi Cheng, “A 20-Gb/s 2-to-1 MUX and a 40-GHz VCO in 0.18-μm CMOS technology,” VLSI Circuits Digest of Technical Papers, pp. 140-143, June 2005
[17] H. Feng, Q. Wu. X. Guan, R. Zhan and A. Wang, “A 2.45GHz Wide Tuning Range VCO Using MOS Varactor in 0.35μm SiGe BiCMOS Technology,” IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, pp. 10-13, Aug. 2005
[18] J. H. Chang and C. K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microwave and Wireless Components Letters, Vol. 15, pp. 670-672, Oct. 2005
[19] Ali Fard, “Phase noise and amplitude issues of a wide-band VCO utilizing a switched tuning resonator,” IEEE International Symposium on Circuits and Systems, pp. 2691-2694, May 2005
[20] B. Razavi et al., “A 0.13 μm CMOS UWB transceiver,” IEEE Int. Solid-State Circuits Conf., pp. 216-217, Feb. 2005
[21] D. Leenaerts et al., “A SiGe BiCMOS 1 ns fast hopping frequency synthesizer for UWB radio,” IEEE Int. Solid-State Circuits Conf., pp. 202-203, Feb. 2005
[22] J. Lee and D. Chiu, “A 7-band 3–8 GHz frequency synthesizer with 1 ns band-switching time in 0.18 μm CMOS technology,” IEEE Int. Solid-State Circuits Conf., pp. 204-205, Feb. 2005
[23] A. Ismail and A. Abidi, “A 3.1 to 8.2 GHz direct conversion receiver for MB-OFDM UWB communications,” IEEE Int. Solid-State Circuits Conf., pp. 208-209, Feb. 2005
[24] T. Geum-Young et al., “A 6.3-9-GHz CMOS fast settling PLL for MB-OFDM UWB applications,” IEEE J. Solid-State Circuits, vol. 40, pp. 1671-1679, Aug. 2005
[25] D. M. W. Leenaerts et al., “A 15-mW fully integrated I/Q synthesizer for Bluetooth in 0.18 μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 1155-1162, July 2003
[26] C. S. Vaucher, “An adaptive PLL tuning system architecture combining high spectral purity and fast settling time,” IEEE J. Solid-State Circuits, vol. 35, pp. 490-502, Apr. 2000
[27] F. M. Gardner, “Charge-pump phase-locked loops,” IEEE Transactions on Communications, vol. COM-28, pp. 1849-1858, Nov. 1980
[28] A. Rofougaran et al., “A 900 MHz CMOS LC-oscillator with quadrature outputs,” IEEE Int. Solid-State Circuits Conf., pp. 392-393, Feb. 1996
[29] T. C. Lee and B. Razavi, “A Stabilization Technique for Phase-Locked Frequency Synthesizers,” IEEE J. Solid-State Circuits, vol. 38, pp. 888-894, June 2003
[30] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC-oscillators,” IEEE Custom Integrated Circuits Conf., pp. 569-572, May 2000
[31] E. A. M. Klumperink et al., “Reducing MOSFET 1/f noise and power consumption by switched biasing,” IEEE J. Solid-State Circuits, vol. 35, pp. 994-1001, July 2000
[32] M. Tiebout, “Low-Power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1018-1024, July 2001
[33] D. Theil et al., ”A Fully Integrated CMOS Frequency Synthesizer for Bluetooth,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 103-106, May 2001
[34] R. K. K. R. Sandireddy, F. F. Dai, R. C. A. Jaeger, “A generic architecture for multi-modulus dividers in low-power and high-speed frequency synthesis,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 243-246, Sept. 2004
[35] C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz Frequency Synthesizer in 0.4-μm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 35, pp. 788-794, May 2000
[36] M. Mansuri, D. Liu, and C.-K. K. Yang, “Fast Frequency Acquisition Phase-Frequency Detectors for GSamples/s Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 37, pp. 1331-1334, Oct. 2002
[37] R. Best, Phase-Locked Loops: Design, Simulation, and Applications, Mcgraw-Hill Companies, 2003
[38] “An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump PLL’s,” National Semiconductor Application Note, AN-1001, July 2001
[39] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 使用CMOS0.18μm技術設計一應用於多頻帶正交頻率多工超寬頻系統bandgroup5及一適用於IEEE802.11a規格之整數型頻率合成器
2. 應用於超寬頻接收機之低電壓低功率低雜訊放大器與多頻帶頻率合成器
3. 低功率3.1~15GHz超寬頻混波器
4. 應用於IEEE802.11a/b/g之雙頻帶低雜訊放大器和偶次諧波降頻混頻器以及使用0.18umCMOS製作之Ka頻低雜訊放大器和K頻壓控震盪器
5. 使用CMOS0.18µm技術設計一個高整合性多頻帶三角積分調變分數型架構之頻率合成器及一個適用於802.11a規格之整數型頻率合成器
6. 應用於無線區域網路與藍芽系統之全積體化低功率低相位雜訊整數型及三角積分之分數型頻率合成器
7. 低功率壓控振盪器以及全整合化2.4GHzCMOS整數N頻率合成器設計
8. 尾電流塑形低相位雜訊暨電流共用低功率四相位輸出壓控振盪器設計與研究
9. 應用於超寬頻與802.11a無線射頻接收機之CMOS低功率低電壓及改善閃爍雜訊技術之混頻器與超低功率混頻器之設計與研究
10. 3.1-10.6GHz互補式金氧半製程之超寬頻低雜訊放大器
11. 2.45-GHz低電壓(0.7V)低功率摺疊切換式混頻器
12. 考慮節點能量之隨意行動無線網路擇路協定
13. 多輸入多輸出正交分頻多工系統中基於編碼可靠度混合重傳機制及適應性調變編碼之聯合設計
14. 15GHz線性化射頻功率控制系統
15. 低相位雜訊架構之ku頻段鎖相震盪器