跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉得佑
研究生(外文):Ye-Tu, Liu
論文名稱:應用多重耦合傳輸線原理求算射頻積體電路矩形螺旋電感
論文名稱(外文):Evaluation of RFIC Inductors using Multiple
指導教授:郭仁財
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:34
中文關鍵詞:射頻積體電路電感多重耦合線傳輸線特徵模態
外文關鍵詞:RFIC inductormultiple linetransmission line
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本篇論文中,利用多重耦合傳輸線理論分析射頻積體電路電感。配合商用軟體,如IE3D、FHSS或是MWO模擬多條耦合傳輸線之響應,再利用多重傳輸線理論萃取傳輸線R、L、G、C矩陣參數。根據多重耦合傳輸線的架構,將射頻積體電路矩形螺旋電感分解成多重耦合微帶線的組合。最後再利用HSPICE模擬等效電路以實現整體電感的電感值與Q值響應。
The multiple coupled transmission line theory is incorporated into analysis for RFIC inductors. Many commercial software packages, such as IE3D and MWO, can be used to simulate frequency response of a section of multiple coupled lines and to extract the transmission line parameters such as RLGC matrices from the frequency response of the multiple coupled lines in term of impedance and admittance matrices. Based on multiple coupled transmission line structure, a spiral inductor is decomposed into many sections of coupled microstrip line in a cascade. Finally, HSPICE is employed to simulate the frequency response of inductance and Q factor of the spiral inductor.
目錄
中文摘要 ……………………………………………………...... i
英文摘要 ……………………………………………………...... ii
致謝 ……………………………………………………...... iii
目錄 ……………………………………………………...... iv
圖目錄 ……………………………………………………...... v ~ vi


第一章 簡介 1
第二章 多重耦合傳輸線理論 3
2-1 多重傳輸線分析 3
2.2 HSPICE之多重耦合傳輸線等效模型 6
2-3 傳輸線參數之萃取方法 10
第三章 射頻積體電路電感之分析 20
3-1 射頻積體電路之多線模型 20
3-2 電感分析流程 20
3-3 射頻積體電路電感之電感值與Q值計算 21
第四章 結論 30
參考文獻 31

圖目錄

圖2-1 N條平行耦合傳輸線。 13
圖2-2 利用相依電壓、電流源實現模態轉換之等效電路模型。 14
圖2-3
平行耦合的兩金屬導線 (a)俯視圖,(b)測試圖,(c)輸入電壓波形。
15
圖2-4 圖2-3電路之HSPICE等效電路。 16
圖2-5 利用圖2-4等效電路模型所得的結果 (a)輸入電壓之波形, (b)RL上的電壓波形, (c)RNE上的電壓波形,實線為HSPICE的結果,虛線為量測結果, (d) RFE上的電壓波形。


17
圖2-6 MWO中兩條平行耦合微帶線之架構與參數。 18
圖2-7 兩條平行耦合微帶線之Z參數比較,其中實線為HSPICE結果,虛線為MWO結果。
18
圖2-8 傳輸線參數之頻率響應 (a)R11與R21之頻率變化曲線,實線為R11,虛線為R21 (b) L11與L21之頻率變化曲線,實線為L11,虛線為L21 (c) C11與C21之頻率變化曲線,實線為C11,虛線為C21。


19
圖3-1 將矩形螺旋電感分割成多重耦合微帶線的組合。 25
圖3-2 整數圈射頻積體電路電感之HSPICE電路架構。 25
圖3-3 圖3-3 射頻積體電路電感模擬之流程。 26
圖3-4(a) 1.75圈、外徑為150�慆、線寬為6�慆、線距為2�慆之射頻積體電路電感之電感值響應圖。 27
圖3-4(b) 1.75圈、外徑為150�慆、線寬為6�慆、線距為2�慆之射頻積體電路電感之Q值響應圖。 27
圖3-5 HSPICE與IE3D之Y參數比較,其中Y參數的大小以Log刻度表示。 28
圖3-6(a) 3圈、外徑為150�慆、線寬為6�慆、線距為2�慆之射頻積體電路電感之電感值響應圖。 29
圖3-6(b) 3圈、外徑為150�慆、線寬為6�慆、線距為2�慆之射頻積體電路電感之Q值響應圖。 29
References

[1] A. Gopinath and P. Silvester, “Calculation of inductance of finite-length strips and its variation with frequency,” IEEE Trans. Micreowave Theory Tech., vol. MTT-21, no. 6, pp. 380-386, June 1973.
[2] A. Gopinath and B. Easter, “Moment method of calculating discontinuity inductance of microstrip right-angle bends,” IEEE Trans. Micreowave Theory Tech., vol. MTT-22, pp. 880-884, Oct. 1974.
[3] A. F. Thomson and A. Gopinath, “Calculation of microstrip discontinuity inductances,” IEEE Trans. Micreowave Theory Tech., vol. MTT-23, no. 8, pp. 648-655, Aug. 1975.
[4] A. R. Djordjevic, C. K. Allen, T. K. Sarkar, and Z. A. Maricevic, “Inductance of perfectly conducting foils including spiral inductors,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 10, pp. 1407-1414, Oct. 1990.
[5] T. Becks and I. Wolff, “Analysis of 3-D metallization structures by a full-wave spectral domain technique,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2219-2227, Dec. 1992.
[6] J. E. Pekarek and T. Itoh, “Use of frequency derivatives in the three-dimensional full-wave spectral domain technique,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2466-2472, Dec. 1996.
[7] R. Bunger and F. Arndt, “Efficient MPIE approach for the analysis of three-dimensional microstrip structures in layered media,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1141-1153, Aug. 1997.
[8] P. Li, “A new closed form formula for inductance calculation in microstrip line spiral inductor design,” IEEE 5th Topical Meeting on Electrical Performance of Electronic Packaging, Napa, CA, October 28-30, 1996, pp. 58-60.
[9] S. S. Mohan, M. d. M. Hershenson, S. P. Boyd and T. H. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
[10] I. Huynen, “Novel fast multiline analysis of parasitic effects in CPW inductors for MMIC,” IEEE Microwave and Wireless Components Letters, vol. 8, no. 2, pp. 72-74, Feb. 1998.
[11] M. Dehan, J.-P. Raskin, I. Huynen, and D. Vanhoenacker - Janvier, “An improved multiline analysis for monolithic inductors,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 100-108, Jan. 2003.
[12] A. E. Ruehli, “Inductance calculations in a complex integrated circuit environment,” IBM J. Res. Develop., vol. 16, pp. 470-481, Sep. 1972.
[13] Z. Yaojiang, L. Haibo and F. Zhenghe, “Calculation of RF-MEMS inductors using partial element equivalent circuits,” in 2000 Int. Microwave Millimeter Wave Tech. Proc., Beijing, CHINA, Sep, 2000, pp. 391-394.
[14] J. E. Garrett, A. E. Ruehli and C. R. Paul, “Accuracy and stability improvements of integral equation models using the partial element equivalent circuit approach,” IEEE Trans. Antennas Propagat., vol. 46, no. 12, pp. 1824-1832, Dec. 1998.
[15] C. Hoer and C. Love, “Exact inductance equations for rectangular conductors with applications to more complicated geometries,” J. Research, National Bureau of Standards-C. Engineering and Instrumentation, vol. 69C, no. 2, pp.127-137, April-June 1965
[16] J. T. Kuo, K. Y. Su, T. Y. Liu, H. H. Chen and S. J. Chung, “Analytical calculation for DC inductances of rectangular spiral inductors with finite metal thickness in the PEEC formulation,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 2, pp. 69-71, Feb. 2006
[17] Clayton R. Paul, Analysis of Multiconductor Transmission Lines, Join Wiley & Sons, New York, 1994.
[18] David M. Pozar, Microware Engineering, Join Wiley & Sons, New York, 2005.
[19] R. Mongia, I. Bahl and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, Boston London.
[20] Vijai K. Tripathi and John B. Rettig, “A SPICE model for multiple coupled microstrips and other transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1513-1518, Dec. 1985.
[21] Clayton R. Paul, “A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field,” IEEE Trans. Electromagnetic Compatibility, vol. 36, no. 4, pp. 342-354, Nov 1994.
[22] Clayton R. Paul, “A simple SPICE model for coupled transmission lines,” IEEE Symp. Electromagnetic Compatibility, pp. 327-333, Aug. 1988.
[23] Antonije R. Djordjevi´c, “SPICE-Compatible Models for Multiconductor Transmission Lines in Laplace-Transform ,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 5, pp. 569-579, May. 1997.
[24] FUNG-YUEL CHANG, “Transient analysis of lossless coupled transmission lines in a nonhomogeneous dielectric medium,” IEEE Trans. Microwave Theory Tech., vol. 18, no. 9, pp. 616-626, Sep. 1970.
[25] C. R. Paul, “Applications of multiconductor transmission Theory to the prediction of cable coupling,” Multiconductor Transmission Line Theory Technical Report, vol. 1, RADC-TR-76-101, Rome Air Development Center, Griffiss AFB, N.Y., April 1976.
[26] V. K. Tripathi and Hyuckjae Lee, “Spectral-domain computation of characteristic impedances and multiport parameters of multiple coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 1, pp. 215-221, Jan. 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top