跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/12 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家源
研究生(外文):Chia-Yuan Chang
論文名稱:適用於UMTS高速下行封包擷取技術之Q-Learning式混合自動重傳機制
論文名稱(外文):Q-Learning-based Hybrid ARQ for High Speed Downlink Packet Access in UMTS
指導教授:張仲儒
指導教授(外文):Chung-Ju Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:47
中文關鍵詞:寬頻分碼多工存取全球行動通訊系統混合自動重傳機制高速下行封包擷取技術Q式加強型學習演算法
外文關鍵詞:WCDMAUMTSHARQHSDPAQ-Learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
為了在現有的WCDMA universal mobile telecommunications system (UMTS)下提供更高速、有效率、健全的下鏈路資料封包傳送,一種高速下行封包擷取技術 (high speed downlink packet access HSDPA) 被3rd generation partnership project (3GPP) 所提出,且已經在Release 5被標準化。針對不同的連結,為了作到更好的適應性,HSDPA除了動態的去調整使用不同的調變方式、不同的編碼速率 (AMC) 提供更多不同的傳輸速率;提供更大量的多碼 (multi-code) 使用運作;同時配合一種混合自動重傳機制 (H-ARQ);以及大幅縮短成2ms的傳送時間間隔,希望去創造更有效率的資源分配。
在本篇論文中,我們提出了一個適用於UMTS高速下行封包擷取技術之Q-learning式混合自動重傳機制 (Q-HARQ)。我們先將整個H-ARQ的程序模擬成一種離散時間馬可夫決策過程 (Markov decision process MDP),並將封包傳送所會付出的代價 (cost) 針對我們所希望去滿足的傳輸服務品質 (quality of service QoS)的封包傳送錯誤率 (BLER) 作設計;再利用一種名為 Q-learning 的即時加強型學習演算法去估計每一次的傳送代價,不斷的去學習,針對每次封包的第一次傳送過程,來達到最佳且符合一定傳輸品質 (QoS) 傳送決策。
模擬結果顯示,我們所提出的方法可以在滿足我們所要求BLER下去選擇最佳的傳送決策。這意味著,針對封包的第一次傳送,我們能提供最有效率的傳輸方法以對抗變化劇烈的通道環境。另一方面,我們也證實了我們所提出的Q-HARQ機制在收斂時間,及處理運算時間均符合實際系統的要求,適用於現行的通訊系統。
WCDMA Release 5 has been standardized for universal mobile telecommunications system (UMTS) in the 3rd generation partnership project (3GPP), where high speed downlink
packet access (HSDPA) is proposed to provide efficient, robust, and high-speed packet data services for UMTS. In HSDPA, the adaptive modulation and coding (AMC) technique and extensive multi-code operation are adopted for the link adaptation. Also, an advanced retransmission strategy based on hybrid automatic repeat request (H-ARQ) is proposed to upgrade the robustness against link adaptation errors. In this thesis, a Q-learning-based hybrid automatic repeat request (Q-HARQ) scheme for HSDPA in UMTS system is proposed to achieve efficient resource utilization. The Hybrid ARQ procedure is modeled as a discrete-time Markov decision process, where the transmission cost is defined in terms of the QoS parameters of transport block error rate for enhancing spectrum utilization subject to QoS constraint. The Q-learning reinforcement algorithm is employed to accurately estimate the transmission cost
to perform the most suitable decision of modulation and coding scheme for the packet initial transmission while the requirement of transport block error rate is guaranteed.

Simulation results show that the QoS requirement of BLER for Q-HARQ is indeed fulfilled. In addition, the performance of the Q-HARQ can be improved under the specific QoS constraint of BLER. It is verified finally that the Q-HARQ scheme is feasible in the practical
system.
Mandarin Abstract i
English Abstract ii
Acknowledgements iv
Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
2 System Model 7
2.1 HSDPA System Operation ..... 7
2.2 The Q-HARQ for Packet Transmission in HS-DSCH ..... 11
2.3 Propagation Model ..... 12
3 Design of Q-HARQ 15
3.1 Markov Decision Process .....15
3.2 State, Action, and Transmission Cost Function ..... 16
3.3 Q-HARQ Scheme ..... 21
3.4 Implementation Issue ..... 25
4 Simulation Results and Discussion 28
4.1 System Environment and Simulation Parameters ..... 28
4.2 Conventional Schemes ..... 29
4.3 Performance Evaluation and Discussions ..... 31
5 Concluding Remarks 42
Vita 47
[1] 3rd Generation mobile system Release 5 specifications, 3GPP Std. TS 21.103, 2001.

[2] H. Holma and A. Toskala, Eds., WCDMA for UMTS, 3rd ed. JohnWiley & Sons, 2002.

[3] E. F. C. LaBerge and J. M. Morris, “Expressions for the mean transfer delay of generalized M-stage hybrid ARQ protocols,” IEEE Trans. Commun., vol. 52, pp. 999–1009,
June 2004.

[4] J. Hagenauer, “Rate compatible punctured convolutional codes (RCPC) and their applications,” IEEE Trans. Commun., vol. 36, pp. 389–400, Apr. 1998.

[5] R. Mantha and F. R. Kschischang, “A capacity-approaching hybrid ARQ scheme using turbo codes,” in Proc. IEEE Global Telecommunications Conference, vol. 5, Dec. 1999, pp. 2341–2345.

[6] R. Kwan, P. Chong, and M. Rinne, “Analysis of the adaptive modulation and coding algorithm with the multicode transmission,” in Proc. IEEE 56th Vehicular Technology
Conference, vol. 4, Sept. 2002, pp. 24–28.

[7] L. Zhao, J. W. Mark, and T. C. Yoon, “A combined link adaptation and incremental redundancy protocol for enhanced data transmission,” in Proc. IEEE Global Telecommunications
Conference, vol. 2, Nov. 2001, pp. 1277–1281.

[8] B. Vucetic, “An adaptive coding scheme for time varying channels,” IEEE Trans. Commun., vol. 39, pp. 653–663, May 1991.

[9] Y. Xu and P. Zhang, “Adaptive incremental redundancy scheme on high-speed wireless communication system,” in Proc. IEEE PIMRC, vol. 1, Sept. 2003, pp. 294–296.

[10] J. F. Cheng, Y. P. E. Wang, and S. Parkvall, “Adaptive incremental redundancy,” in Proc. IEEE 58th Vehicular Technology Conference, vol. 2, Oct. 2003, pp. 6-9.

[11] J. M. Shea, “Reliability-based hybrid ARQ,” IEE Electron. Lett., vol. 38, pp. 644–645, June 2002.

[12] H. Kim and J. Shea, “New turbo-ARQ techniques based on estimated reliabilities,” in Proc. IEEE WCNC, vol. 2, Mar. 2003, pp. 16–20.

[13] V. Tripathi and E. Visotsky, “Reliability-based type II hybrid ARQ schemes,” in Proc. IEEE ICC, vol. 4, May 2003, pp. 2899–2903.

[14] A. Roongta and J. Shea, “Reliability-based hybrid ARQ using convolutional codes,” in Proc. IEEE ICC, vol. 4, May 2003, pp. 2889–2893.

[15] ——, “Reliability-based hybrid ARQ and rate-compatible punctured convolutional (RCPC) codes,” in Proc. IEEE WCNC, vol. 4, Mar. 2004, pp. 2105–2109.

[16] H. Chen and P. Fan, “An adaptive coded modulation scheme associated with improved HARQ,” in Proc. IEEE PIMRC, vol. 2, Sept. 2003, pp. 1292–1296.

[17] B. Makarevitch, “Application of reinforcement learning to admission control in CDMA network,” in Proc. IEEE PIMRC, vol. 2, Sept. 2000, pp. 1353–1357.

[18] J. Nie and S. Haykin, “A Q-learning-based dynamic channel assignment technique for mobile communication systems,” IEEE Trans. Vehicular Technology, vol. 48, pp. 1676-1687, Sept. 1999.

[19] H. Tong and T. X. Brown, “Adaptive admission call admission control under quality of service constraints: a reinforcement learning solution,” IEEE J. Select. Areas.
Commun., vol. 18, pp. 209–221, Feb. 2000.

[20] P. Marbach, O. Mihatsch, and J. N. Tsisiklis, “Call admission control and routing in integrated services networks using neuro-dynamic programming,” IEEE J. Select. Areas. Commun., vol. 18, pp. 197–208, Feb. 2000.

[21] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8.

[22] S. Haykin, Neural Networks, 2nd ed. Prentice Hall, 1999.

[23] L. Gordon, Principle of Mobile Communication. Kluwer Academic, 1958.

[24] M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” IEE Electron. Lett., vol. 27, pp. 2145–2146, Nov. 1991.

[25] A. J. Viterbi, A. M. Viterbi, K. S. Gilhousen, and E. Zehavi, “Soft handoff extends cdma cell coverage and increases reverse link capacity,” IEEE J. Select. Areas. Commun., vol. 12, pp. 1281–1288, Oct. 1994.

[26] R. Bellman, Dynamic Programming. Princeton, 1957.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top