|
[1] C.-H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E. M. Tentzeris, and J. Laskar, “A compact LTCC-based Ku-band transmitter module,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 374–384, Aug. 2002. [2] J. Ryckaert, S. Brebels, B. Come,W. Diels, D. Hauspie, S. Stoukatch, K. Vaesen, W. De Raedt, and S. Donnay, “Single-package 5 GHz WLAN RF module with embedded patch antenna and 20 dBm power amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1037–1040, 2003. [3] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2718–2724, Dec. 2004. [4] M. M. Tentzeris, J. Laskar, J. Papapolymerou, S. Pinel, V. Palazzari, R. Li, G. Dejean, N. Papageorgiou, D. Thompson, R. Bairavasubramanian, S. Sarkar, and J.-H. Lee, “3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on-package technology,” IEEE Trans. Adv. Packag., vol.27, no. 2, pp. 332–340, May 2004. [5] A. Chernyakov, K. Markov, D. Orlenko, P. Heide, and C. Ruppel, “Miniature fully-integrated WLAN frontend-modules based on LTCC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp.139–142. [6] A. C. W. Lu, K. M. Chua, L. L. Wai, S. C. K. Wong, J. J. Wang, and Y.P. Zhang, “Integrated antenna module for broad-band wireless applications,”in Electronics Packaging Tech. Conf., 2004, pp. 240–243. [7] Theerachet Soorapanth and S. Simon Wong, “A 0-dB IL 2140�b30MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS,” IEEE J. Solid-State Circuits, vol. 37, pp. 579-586, May 2002. [8] Xin He and William B. Kuhn, “A 2.5-GHz low-power, high dynamic range, self-tuned Q-enhanced LC filter in SOI,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1618-1628, Aug. 2005. [9] Aparin V., Gazzerro P., Jianjun Zhou, Bo Sun, Szabo S., Zeisel E., Segoria T., Ciccarelli S., Persico C., Narathong C., Sridhara R., “A highly-integrated tri-band/quad-mode SiGe BiCMOS RF-to-baseband receiver for wireless CDMA/WCDMA/AMPS applications with GPS capability,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2002, pp. 234-235. [10] Thomas H. Lee, Hirad Samavati, and Hamid R. Rategh, “5-GHz CMOS wireless lans,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 123-127, Jan. 2002. [11] Stroet P. M., Mohindra R., Hahn S., Schuur A., and Riou E., “A zero-IF single-chip transceiver for up to 22 Mb/s QPSK 802.11b wireless LAN,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2001, pp. 204-205. [12] Kluge W., Dathe L., Jaehne R., Ehrenreich S., and Eggert D., “A 2.4GHz CMOS transceiver for 802.11b wireless LANs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 360-361. [13] Duvivier E., Cipriani S., Carpineto L., Cusinato P., Bisanti B., Galant F., Chalet F., Coppola F., Cercelaru S., Puccio G., Mouralis N., and Jiguet J. C., “A fully integrated zero-IF transceiver for GSM-GPRS quad band application,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 274-275. [14] Filiol N., Birkett N., Cherry J., Balteanu F., Gojocaru C., Namdar A., Pamir T., Sheikh K., Glandon G., Payer D., Swaminathan A., Forbes R., Riley T., Alinoor S. M., Macrobbie E., Cloutier M., Pipilos S., and Varelas T, “A 22 mW Bluetooth RF transceiver with direct RF modulation and on-chip IF filtering,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2001, pp. 202-203. [15] Tadjpour S., Cijvat E., Hegazi E., and Abidi A., “A 900 MHz dual conversion low-IF GSM receiver in 0.35 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2001, pp. 292-293. [16] Leeuwenburgh A. J., Laak J. W. F., Mulders A. G., Hoogstraate A. J., van Laarhoven P. J. M., Nijrolder M., Prummel J. G., Kamp P. J. M., “A 1.9GHz fully integrated CMOS DECT transceiver,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 450-452. [17] Cojocaru C., Pamir T., Balteanu F., Namdar A., Payer D., Gheorghe I., Lipan T., Sheikh K., Pingot J., Paananen H., Littow M., Cloutier M., MacRobbie E., “A 43mW Bluetooth transceiver with -91dBm sensitivity,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 90-91. [18] Dandan Li and Yannis Tsividis, “Design techniques for Automatically tuned integrated gigahertz-range active LC filters,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 967-977, Aug. 2002. [19] Sotiris Bantas and Yorgos Koutsoyannopoulos, “CMOS active-LC bandpass filters with coupled-inductor Q-enhancement and center frequency tuning,” IEEE Trans. Circuits Syst. II, vol.51, pp.69-76, Feb. 2004. [20] Ahmed Nader Mohieldin, Edgar Sanchez-Sinencio, and Jose Silva-Martinez, “A 2.7-V 1.8-GHz fourth-order tunable LC bandpass filter based on emulation of magnetically coupled resonators,” IEEE J. Solid-State Circuits, vol. 38, pp. 1172-1181, Jul. 2003. [21] Yi-Cheng Wu and M. Frank Chang, “On-chip RF spiral inductors and bandpass filters using active magnetic energy recovery,” in Proc. IEEE Custom Integrated Circuits Conf., Orlando, May 2002, pp. 275-278. [22] Fikert Dulger, Edgar Sanchez-Sinencio, and Jose Silva-Martinez, “A 1.3-V 5-mW fully integrated tunable bandpass filter at 2.1 GHz in 0.35um CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 918-928, Jun. 2003. [23] Shaorui Li, Nebojsa Stanic, Krishnamurthy Soumyanath, and Yannis Tsividis, “An Integrated 1.5 V 6 GHz Q-Enhanced LC CMOS Filter with Automatic Quality Factor Tuning Using Conductance Reference,” 2005 IEEE Int. Radio Frequency Integrated Circuits Symp. Dig., pp. 621-624, July 2005. [24] S. Pipilos, Y. P. Tsividis, J. Fenk, and Y. Papananos, “ A Si 1.8 GHz RLC filter with tunable center frequency and quality factor,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1517-1525, Oct. 1996. [25] Chinh H. Doan, Sohrab Emami, Ali M. Niknejad, and Robert W. Brodersen, “Design of CMOS for 60GHz Applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2004, pp. 440-441. [26] Hung-Ta Tso and Chien-Nan Kuo, “40GHz miniature bandpass filter design in standard CMOS process,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Atlanta, Sep. 2004, pp. 239-242. [27] Kamran Entesari, Tauno Vaha-Heikkila, and Gabriel M. Rebeiz, “Miniaturized differential filters for C- and Ku-band applications,” in Proc. Eur. Microwave Conf., Munich, Germany, 2003, pp. 227-230. [28] C.-C. Chen and Ching-Kuang C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637–1647, Jun. 2004. [29] Ching-Kuang C. Tzuang, Hsien-Hung Wu, Hsien-Shun Wu, and Johnsea Chen, “A CMOS miniaturized C-Band active bandpass filter,” in IEEE MTT-S Int. Microwave symp. Dig., San Francisco, Jun. 2006, pp. 772-775. [30] Ching-Kuang C. Tzuang, Hsien-Hung Wu, Hsien-Shun Wu, and Johnsea Chen, “CMOS active bandpass filter using compacted synthetic quasi-tem lines at C-band,” to be appeared in IEEE Trans. Microw. Theory Tech., Sep. 2006. [31] W. R. Eisenstadt and Y. Eo, “S-parameter-Based IC interconnect transmission line characterization,” IEEE Trans. On Components, Hybrids, and Manufacturing Tech., vol. 15, pp. 483-490, Aug. 1992. [32] Hsien-Shun Wu, Houng-Jay Yang, Ching-Juang Peng, and Ching-Kuang Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Tech., vol.53, no. 9, pp. 2317-2720, Sep. 2005. [33] H. J. Orchard, “Inductorless filter,” Electron Letters, vol. 2, pp. 224-225, Jun. 1966. [34] H. J. Orchard and Desmond F. Sheahan, “Inductorless bandpass filter,” IEEE J. Solid-State Circuits, vol. sc-5, no. 3, pp. 108-118, Jun. 1970. [35] J. O. Voorman, W.H. A. Bruls, and P. J. Barth, “Integration of analog filters in a bipolar process,” IEEE J. Solid-State Circuits, vol. sc-17, no. 4, pp. 713-722, Aug. 1982. [36] Yun-Ti Wang and AsAd A. Abidi, “CMOS active filter design at very high frequencies,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1562-1573, Dec. 1990. [37] Bram Nauta, Analog CMOS filters for very high frequencies. MA: Kluwer Academic Publishers, 1993, ch. 3. [38] S. P. Marsh and R. G. Arnold, “MMIC gyrator bandstop filter with ultra-wideband tuning,” in Gallium Arsenide Integrated Circuit (GaAs IC) Symp. Dig., 1994, pp. 39-40. [39] R. Kaunisto, P. Alinikula, K. Stadius, and V. Porra, “A low-power HBT MMIC filter based on tunable active inductor,” IEEE Microwave Wireless Compon. Lett., vol. 7, no. 8, pp. 209-211, Aug. 1997. [40] F. Giannini, E. Limiti, G. Orengo, and P. Sanzi, “High-Q gyrator-based monolithic active tunable bandstpop filter,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 809-812. [41] Shinji Hara, Tsuneo Tokumitsu, Toshiaki Tanaka, and Masayoshi Aikawa, “Broad-band monolithic microwave active inductor and its applications to miniaturized wind-band amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp. 1920-1924, Dec. 1988. [42] Shinji Hara, Tsuneo Tokumitsu, and Masayoshi Aikawa, “Lossless broad-band monolithic microwave active inductor,” in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp. 955-958. [43] Stepan Lucyszyn and Ian D. Robertson, “Monolithic narrow-band filter using ultrahigh-Q tunable active inductor,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2617-2622, Dec. 1994. [44] Stepan Lucyszyn and Ian D. Robertson, “High performance MMIC narrow band filter using tunable active inductor,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 91-93. [45] E. M. Bastida, G. P. Donzelli, and L. Scopelliti, “GaAs monolithic microwave integrated circuits using broadband tunable active inductors,” in Proc. 19th European Microwave Conf., Sept. 1989, pp. 1282-1287. [46] Jin-Su Ko and Kwyro Lee, “Low power tunable active inductor and its applications to monolithic VCO and BPF,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 929-932. [47] Kang-Wei Fan, Ching-Chih Weng, Zou-Min Tsai, Huei Wang, and Shyh-Kang Jeng, “K-band MMIC active band-pass filter,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 1, pp. 19-21, Jan. 2005. [48] K. W. Kobayashi, L. T. Tran, D. K. Umemoto, A. K. Oki, and D. C. Streit, “A 6.45 GHz active bandpass filter using HBT negative resistance elements,” in Gallium Arsenide Integrated Circuit (GaAs IC) Symp. Dig., Nov. 1998, pp. 143-146. [49] Bernd P. Hopf, Ingo Wolff, and Marco Gugiielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 1183-1185. [50] Bernd P. Hopf, Ingo Wolff, and Marco Gugiielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2598-2602, Dec. 1994. [51] Yonh-Ho Cho, Song-Cheol Hong, and Young-Se Kwon, “A low-power monolithic GaAs FET bandpass filter based on negative resistance technique,” IEEE Microwave Guided Wave lett., vol. 8, no. 4, pp. 161-163, Apr. 1998. [52] Ulun Karacaoglu and Ian D. Robertson, “MMIC active bandpass filters using negative resistance elements,” in IEEE Microwave and Millimeter-Wave Monolithic Circuit (MMWMC) Symp. Dig., 1995, pp. 171-174. [53] Ulun Karacaoglu and Ian D. Robertson, “MMIC active bandpass filters using varactor-tuned negative resistance elements,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2926-2932, Dec. 1995. [54] M. R. Moazzam, I. D. Robertson, A. H. Aghvami, and Marco Gugiielmi, “S-band monolithic active filter using actively-coupled resonator techniques,” in Proc. 22nd European Microwave Conf., Aug. 1992, pp. 729-734. [55] Chi-Yang Chang and Tatsuo Itoh, “Microwave active filters based on coupled negative resistance method,” IEEE Trans. Microwave Theory & Tech., vol. 38, no. 12, pp. 1879-1884, Dec. 1990. [56] Masaharu Ito, Kenichi Maruhashi, Shuya Kishimoto, and Keiichi Ohata, “60-GHz-Band Coplanar MMIC Active Filter,” IEEE Trans. Microwave Theory & Tech., vol. 52, no. 3, pp. 743-750, March 2004. [57] Ulun Karacaoglu, Ian D. Robertson, and M. Guglielmi, “A dual-mode microstrip ring resonator filter with active devices for loss compensation,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 189-192. [58] Ulun Karacaoglu, Ian D. Robertson, and M. Guglielmi, “Microstrip bandpass filters using MMIC negative resistance circuits for loss compensation,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 613-616. [59] R. R. Bonetti, A. E. Williams, T. Duong, R. Gupta, and R. Mott, “An MMIC active filter with 60-dB rejection,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1992, pp. 1195-1198. [60] Nhat M. Nguyen and Robert G. Meyer, “A Si bipolar monolithic RF bandpass amplifier,” IEEE J. Solid-State Circuits, vol. 27, no. 1, pp. 123-127, Jan. 1992. [61] Hossein Hashemi and Ali Hajimiri, “Cocurrent multiband low-nose amplifiers-theory, design, and applications” IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 288-301, Jan. 2002.
[62] Manfred J. Schindler and Yusuke Tajima, “A novel MMIC active filter with lumped and transversal,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 12, pp. 2148-2153, Dec. 1989. [63] M. Danestig, H. Johansson, A. Ouaha, and S. Rudner, “Low-noise active recursive MMIC filters,” in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, Jun. 1997, pp. 705-708. [64] H. Ezzedine, M. Delmond, L. Billonnet, B. Jarry, and P. Guillon, “Optimization of noise performance for various topologies of microwave active recursive filters,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1173-1176. [65] M. Delmond and L. Billonnet, “Microwave tunable active filter design in MMIC technology using recursive concepts,” in IEEE Microwave and Millimeter-Wave Monolithic Circuit (MMWMC) Symp. Dig., 1995, pp. 105-108. [66] W. Mouzannar, L. Billonnet, B. Jarry, and P. Guillon, “Highly selective novel MMIC microwave active recursive filter,” in IEEE Radio Frequency Integrated Circuit (RFIC) Symp. Dig., 1998, pp. 39-42. [67] A. Cenac, H. Ezzedine, L. Billonnet, B. Jarry, and P. Guillon, “Low noise and frequency tunable microwave active recursive filters using power summation principles,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 1227-1230. [68] D. K. Asams and R. Y. C. Ho, “Active filters for UHF and microwave frequencies,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 662-670, Sep. 1969. [69] C. R. Poole, “The effect of device configuration on GaAs MESFET negative resistance behavior,” in Int. Circuit and System Conf., Shenzhen, China, Jun. 1991, pp. 427-430. [70] Jae-Ryong Lee, Young-Hoon Chun, and Sang-Won Yun, “A novel bandpass filter using active capacitance,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1747-1750. [71] Young-Hoon Chun, Jae-Ryong Lee, Sang-Won Yun, and Jin-Koo Rhee, “Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 687-694, Feb. 2005. [72] Ching-Yuang. Wu and Khun-Nan Lai, “Integrated Lambda differential negative resistance MOSFET device,” IEEE J. Solid-State Circuits, vol. 14, no. 6, pp. 1094-1101, Dec. 1979. [73] Behzad Razavi, RF Microelectronics. NJ: Prentice-Hall, 1998, pp. 228.
[74] George L. Matthaei, Leo Young, and E.M.T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, MA: Artech House, 1980, ch. 8. [75] George D. Vendelin, Anthony M. Pavio, and Ulrich L. Rohde, Microwave Circuit Design using Linear and Nonlinear Techniques. New York: Wiley, 1990, pp. 103. [76] Paul A. Layman, and Savvas G. Chamberlain, “A compact thermal noise model for the investigation of soft error rates in MOS VLSI digital circuits,” IEEE J. Solid-State Circuits, vol. 24, pp. 79-89, Feb. 1989. [77] Emad Hegazi, Henrik Sjoland, and Asad A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1929, Feb. 2001. [78] Derek K. Shaeffer and Thomas H. Lee, The Design and Implementation of Low-Power CMOS Radio Receivers. MA: Kluwer Academic Publishers, 1999, pp.52-53. [79] Behzad Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001, pp. 212-213. [80] Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design. 2nd ed., NJ: Prentice-Hall, 1997, ch. 4. [81] Yuhua Cheng and Chenming Hu, Mosfet Modeling & Bsim3 User’s Guide. MA: Kluwer Academic Publishers, 1999, ch. 10. [82] F. B. Lewellyn, “Some fundamental properties of transmission systems,” Proc. IRE, vol. 40, no. 3, pp. 271-283, Mar. 1952. [83] J. M. Rollet, “Stability and power gain invariants of linear two ports,” IRE Trans. Circuit Theory, vol. CT-9, no. 3, pp. 29-32, Mar. 1962. [84] Robert W. Jackson, “Rollet Proviso in the stability of linear microwave circuits-a tutorial,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 993-1000, Mar. 2006. [85] M. Ohtomo, “Proviso on the unconditional stability criteria for linear two ports,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 5, pp. 1197-1200, Mar. 1995. [86] Marion Lee Edwards and Jeffery H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2303-2311, Dec. 1992. [87] Marion Lee Edwards and Jeffery H. Sinsky, “New simple proofs of the two-port stability criterion in terms of the single stability parameter ��,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1073-1076, Jun. 2001. [88] K. Kurokawa, An Introduction to the Theory of Microwave Circuits. New York: Academic, 1969. [89] Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design. 2nd ed., NJ: Prentice Hall, 1997, pp.217-227. [90] Giancarlo Lombardi and Bruno Neri, “Criteria for the evaluation of unconditional stability of microwave linear two-ports: a critical review and new proof,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 6, pp. 746–751, Jun. 1999. [91] D. Woods, “Reappraisal of unconditional stability criteria for active 2-port networks in terms of S-parameters,” IEEE Trans. Circuit Syst., vol. CAS-23, no. 2, pp. 281-283, Feb. 1976. [92] A. Platzker, W. Struble, and K. T. Hetzler, “Instabilities diagnosis and the role of K in microwave circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1993, pp. 1185-1189. [93] Robert W. Jackson, “Criteria for the onset of oscillation in microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 3, pp. 566-569, Mar. 1992. [94] Robert W. Jackson, “Comments for the onset of oscillation in microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 9, pp. 1850-1851, Sep. 1992. [95] C. C. Meng and H. Y. Ni, “Determining stability circle using two geometrically derived parameters,” in Asia-Pacific Microwave Conf., Dec. 2000, pp. 1101-1104. [96] Frank Ellinger, David Barras, Martin Schmatz, and Heinz Jackel, “A low power DC-7.8 GHz BiCMOS LNA for UWB and optical communication,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 13-16. [97] David Barras, Frank Ellinger, Heinz Jackel, and Walter Hirt, “A low supply voltage SiGe LNA for ultra-wideband frontends,” IEEE Microwave Wireless Compon. Lett., vol. 14, no. 10, pp. 469-471, Oct. 2004.
|