跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳憲宏
研究生(外文):Hsien-Hung Wu
論文名稱:單晶互補式金屬導線傳輸線CMOS主動濾波器設計
論文名稱(外文):Complementary-Conducting-Strips Transmission Line CMOS Active Filter Design
指導教授:莊晴光
指導教授(外文):Ching-Kuang C. Tzuang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:89
中文關鍵詞:主動濾波器金氧互補半導體互補式金屬導線傳輸線
外文關鍵詞:active filterCMOScomplementary conducting stripstransmission line
相關次數:
  • 被引用被引用:0
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文係研究互補式金屬導線傳輸線 (complementary conducting strips transmission line) 在標準0.18 �慆 CMOS 製程,實現單晶片 (monolithic) 主動濾波器的兩種新穎設計方法。第一種方法係利用負阻抗電路以分散補償的方式,改善互補式金屬導線傳輸線的傳播損耗 (propagation loss)。所合成出的主動傳輸線在1 GHz 至 5.5 GHz頻段內展現出無損耗的特性,並且具備比被動傳輸線更優越的慢波特性 (slow wave property)。利用該主動傳輸線所設計出的5.5 GHz二階帶通濾波器,雖然在 10.1 MHz發生了震盪的情況。但該結果反應出從架構層次設計損耗補償(loss compensation)的重要性。
第二種方法係利用品質因子提昇後的半波長互補式金屬導線傳輸線共震器 (resonator),實現一個C頻段的主動濾波器。共震器的損耗補償只作用於主動濾波器的導通頻段內,而且介入損失 (insertion loss) 的調整並不影響到主動濾波器的中心頻率與 3 dB頻寬。量測的結果顯示主動濾波器的中心頻率為 6.02 GHz,3-dB頻寬為 1.14 GHz。當主動濾波器的介入損失與增益分別為 2.2 dB與0.56 dB時,所消耗的功率分別為 5.4 mW 與 7.2 mW,並且沒有震盪的情況發生。而在導通頻段內的雜訊指數與輸入端1-dB 功率壓縮點,則分別為 11.4 dB 與 -15.2 dBm。該主動濾波器所需的電路面積為 1230 �慆 x 880 �慆,趨近於同頻段內使用總集元件之主動濾波器的電路面積。
This dissertation presents two innovating design approaches of the monolithic active bandpass filter employing complementary-conducting-strips transmission lines (CCS TLs) in a standard 0.18 �慆 CMOS technology. The first approach utilizes the negative resistance circuit to distributed compensate the propagation loss within the passive CCS TL and successfully produce a loss-free active CCS TL from 1 GHz to 5.5 GHz with enhanced slow wave property. Though the realized 5.5 GHz second-order active CCS TL bandpass filter had stability problem around 10.1 MHz, but the result reflected the fact that the loss compensation within an active filter need to be adequately designed in view of the architecture.
The second approach adopts the Q-enhanced half-wavelength CCS TL resonators for a C-Band second-order active bandpass filter design. The loss compensation is only activated at the filter’s passband, and the insertion loss could be adjusted without affecting the filter’s center frequency and 3-dB bandwidth. Measured results indicate that the filter’s center frequency was 6.02 GHz with a 3-dB bandwidth of 1.14 GHz and this filter was free from oscillations with either an 2.2-dB insertion loss or a 0.56-dB transmission gain. The corresponding power consumptions were 5.4 mW and 7.2 mW. Also a modest 11.4-dB noise figure and a modest -15.2-dBm input 1-dB compression point were measured at the passband of this filter. The required chip area was 1230 �慆 x 880 �慆 which is comparable to those of monolithic active bandpass filters based on lump LC elements at C-Band.
ABSTRACT (Chinese)……………………………………………………………….I
ABSTRACT (English)……………………………………………………………….II
ACKNOWLEDGEMENTS………………………………………………………….III
TABLE OF CONTENTS ……………………………………………………………IV
LIST OF TABLES …………………………………………………………………..VI
LIST OF FIGURES ………………………………………………………………...VII
CHAPTER 1 Introduction ……………………………………………………………1
1.1 Background .……………………………..……………………………………..1
1.2 Organizations ……………..…………………..………………………………..3
CHAPTER 2 CMOS Synthesized Thin-Film Transmission Line ….…………………4
2.1 Validity Check of Software-Based Analysis Method...…………………………4
2.2 Comparative Study of CCS TL against Microstip in Meandered Configuration 9
2.3 Discussion ……….……………………………………………………………16
CHAPTER 3 Approaches of Microwave Active Filters ………....…………………..17
3.1 Overview on Active Inductor and Active Resonator Techniques ……………..17
3.1.1 Negative Resistance Circuits...…………………………………………....20
3.2 CMOS Active CCS TL ……………….……….………………………………25
3.3 A 5.5 GHz Active Bandpass Filter …………………………………………... 30
3.4 Discussion ……….……………………………………………………………35
CHAPTER 4 Miniaturized C-Band Active Bandpass Filter…………………………36
4.1 CCS TL Half-Wavelength Resonator ………….………………………..…….37
4.2 Q-Enhanced Monolithic Half-Wavelength Resonator …………………...........41
4.3 CMOS Transmission-Line Based Active Bandpass Filter ……………………48
4.4 Nonlinear Characteristics …………..…………………………………………55
4.5 Noise Analyses ………………………………………………………………..59
4.5.1 Equivalent Noisy Two-Port Network …………………………………….59
4.5.2 Validity Check and Design Trade-offs.…………………………………...62
4.6 Stability Analyses ...….………………………………………….…………….67
4.7 Figure of Merit ……………………………………..…………………….…...75
4.8 Discussion …………………………………………………………………….78
CHAPTER 5 Conclusion ……………………………………………………………79
REFERENCE ………………………………………………………………………..82
[1] C.-H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E. M. Tentzeris, and J. Laskar, “A compact LTCC-based Ku-band transmitter module,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 374–384, Aug. 2002.
[2] J. Ryckaert, S. Brebels, B. Come,W. Diels, D. Hauspie, S. Stoukatch, K. Vaesen, W. De Raedt, and S. Donnay, “Single-package 5 GHz WLAN RF module with embedded patch antenna and 20 dBm power amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1037–1040, 2003.
[3] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2718–2724, Dec. 2004.
[4] M. M. Tentzeris, J. Laskar, J. Papapolymerou, S. Pinel, V. Palazzari, R. Li, G. Dejean, N. Papageorgiou, D. Thompson, R. Bairavasubramanian, S. Sarkar, and J.-H. Lee, “3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on-package technology,” IEEE Trans. Adv. Packag., vol.27, no. 2, pp. 332–340, May 2004.
[5] A. Chernyakov, K. Markov, D. Orlenko, P. Heide, and C. Ruppel, “Miniature fully-integrated WLAN frontend-modules based on LTCC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp.139–142.
[6] A. C. W. Lu, K. M. Chua, L. L. Wai, S. C. K. Wong, J. J. Wang, and Y.P. Zhang, “Integrated antenna module for broad-band wireless applications,”in Electronics Packaging Tech. Conf., 2004, pp. 240–243.
[7] Theerachet Soorapanth and S. Simon Wong, “A 0-dB IL 2140�b30MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS,” IEEE J. Solid-State Circuits, vol. 37, pp. 579-586, May 2002.
[8] Xin He and William B. Kuhn, “A 2.5-GHz low-power, high dynamic range, self-tuned Q-enhanced LC filter in SOI,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1618-1628, Aug. 2005.
[9] Aparin V., Gazzerro P., Jianjun Zhou, Bo Sun, Szabo S., Zeisel E., Segoria T., Ciccarelli S., Persico C., Narathong C., Sridhara R., “A highly-integrated tri-band/quad-mode SiGe BiCMOS RF-to-baseband receiver for wireless CDMA/WCDMA/AMPS applications with GPS capability,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2002, pp. 234-235.
[10] Thomas H. Lee, Hirad Samavati, and Hamid R. Rategh, “5-GHz CMOS wireless lans,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 123-127, Jan. 2002.
[11] Stroet P. M., Mohindra R., Hahn S., Schuur A., and Riou E., “A zero-IF single-chip transceiver for up to 22 Mb/s QPSK 802.11b wireless LAN,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2001, pp. 204-205.
[12] Kluge W., Dathe L., Jaehne R., Ehrenreich S., and Eggert D., “A 2.4GHz CMOS transceiver for 802.11b wireless LANs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 360-361.
[13] Duvivier E., Cipriani S., Carpineto L., Cusinato P., Bisanti B., Galant F., Chalet F., Coppola F., Cercelaru S., Puccio G., Mouralis N., and Jiguet J. C., “A fully integrated zero-IF transceiver for GSM-GPRS quad band application,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 274-275.
[14] Filiol N., Birkett N., Cherry J., Balteanu F., Gojocaru C., Namdar A., Pamir T., Sheikh K., Glandon G., Payer D., Swaminathan A., Forbes R., Riley T., Alinoor S. M., Macrobbie E., Cloutier M., Pipilos S., and Varelas T, “A 22 mW Bluetooth RF transceiver with direct RF modulation and on-chip IF filtering,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2001, pp. 202-203.
[15] Tadjpour S., Cijvat E., Hegazi E., and Abidi A., “A 900 MHz dual conversion low-IF GSM receiver in 0.35 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2001, pp. 292-293.
[16] Leeuwenburgh A. J., Laak J. W. F., Mulders A. G., Hoogstraate A. J., van Laarhoven P. J. M., Nijrolder M., Prummel J. G., Kamp P. J. M., “A 1.9GHz fully integrated CMOS DECT transceiver,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 450-452.
[17] Cojocaru C., Pamir T., Balteanu F., Namdar A., Payer D., Gheorghe I., Lipan T., Sheikh K., Pingot J., Paananen H., Littow M., Cloutier M., MacRobbie E., “A 43mW Bluetooth transceiver with -91dBm sensitivity,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2003, pp. 90-91.
[18] Dandan Li and Yannis Tsividis, “Design techniques for Automatically tuned integrated gigahertz-range active LC filters,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 967-977, Aug. 2002.
[19] Sotiris Bantas and Yorgos Koutsoyannopoulos, “CMOS active-LC bandpass filters with coupled-inductor Q-enhancement and center frequency tuning,” IEEE Trans. Circuits Syst. II, vol.51, pp.69-76, Feb. 2004.
[20] Ahmed Nader Mohieldin, Edgar Sanchez-Sinencio, and Jose Silva-Martinez, “A 2.7-V 1.8-GHz fourth-order tunable LC bandpass filter based on emulation of magnetically coupled resonators,” IEEE J. Solid-State Circuits, vol. 38, pp. 1172-1181, Jul. 2003.
[21] Yi-Cheng Wu and M. Frank Chang, “On-chip RF spiral inductors and bandpass filters using active magnetic energy recovery,” in Proc. IEEE Custom Integrated Circuits Conf., Orlando, May 2002, pp. 275-278.
[22] Fikert Dulger, Edgar Sanchez-Sinencio, and Jose Silva-Martinez, “A 1.3-V 5-mW fully integrated tunable bandpass filter at 2.1 GHz in 0.35um CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 918-928, Jun. 2003.
[23] Shaorui Li, Nebojsa Stanic, Krishnamurthy Soumyanath, and Yannis Tsividis, “An Integrated 1.5 V 6 GHz Q-Enhanced LC CMOS Filter with Automatic Quality Factor Tuning Using Conductance Reference,” 2005 IEEE Int. Radio Frequency Integrated Circuits Symp. Dig., pp. 621-624, July 2005.
[24] S. Pipilos, Y. P. Tsividis, J. Fenk, and Y. Papananos, “ A Si 1.8 GHz RLC filter with tunable center frequency and quality factor,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1517-1525, Oct. 1996.
[25] Chinh H. Doan, Sohrab Emami, Ali M. Niknejad, and Robert W. Brodersen, “Design of CMOS for 60GHz Applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, Feb. 2004, pp. 440-441.
[26] Hung-Ta Tso and Chien-Nan Kuo, “40GHz miniature bandpass filter design in standard CMOS process,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Atlanta, Sep. 2004, pp. 239-242.
[27] Kamran Entesari, Tauno Vaha-Heikkila, and Gabriel M. Rebeiz, “Miniaturized differential filters for C- and Ku-band applications,” in Proc. Eur. Microwave Conf., Munich, Germany, 2003, pp. 227-230.
[28] C.-C. Chen and Ching-Kuang C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637–1647, Jun. 2004.
[29] Ching-Kuang C. Tzuang, Hsien-Hung Wu, Hsien-Shun Wu, and Johnsea Chen, “A CMOS miniaturized C-Band active bandpass filter,” in IEEE MTT-S Int. Microwave symp. Dig., San Francisco, Jun. 2006, pp. 772-775.
[30] Ching-Kuang C. Tzuang, Hsien-Hung Wu, Hsien-Shun Wu, and Johnsea Chen, “CMOS active bandpass filter using compacted synthetic quasi-tem lines at C-band,” to be appeared in IEEE Trans. Microw. Theory Tech., Sep. 2006.
[31] W. R. Eisenstadt and Y. Eo, “S-parameter-Based IC interconnect transmission line characterization,” IEEE Trans. On Components, Hybrids, and Manufacturing Tech., vol. 15, pp. 483-490, Aug. 1992.
[32] Hsien-Shun Wu, Houng-Jay Yang, Ching-Juang Peng, and Ching-Kuang Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Tech., vol.53, no. 9, pp. 2317-2720, Sep. 2005.
[33] H. J. Orchard, “Inductorless filter,” Electron Letters, vol. 2, pp. 224-225, Jun. 1966.
[34] H. J. Orchard and Desmond F. Sheahan, “Inductorless bandpass filter,” IEEE J. Solid-State Circuits, vol. sc-5, no. 3, pp. 108-118, Jun. 1970.
[35] J. O. Voorman, W.H. A. Bruls, and P. J. Barth, “Integration of analog filters in a bipolar process,” IEEE J. Solid-State Circuits, vol. sc-17, no. 4, pp. 713-722, Aug. 1982.
[36] Yun-Ti Wang and AsAd A. Abidi, “CMOS active filter design at very high frequencies,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1562-1573, Dec. 1990.
[37] Bram Nauta, Analog CMOS filters for very high frequencies. MA: Kluwer Academic Publishers, 1993, ch. 3.
[38] S. P. Marsh and R. G. Arnold, “MMIC gyrator bandstop filter with ultra-wideband tuning,” in Gallium Arsenide Integrated Circuit (GaAs IC) Symp. Dig., 1994, pp. 39-40.
[39] R. Kaunisto, P. Alinikula, K. Stadius, and V. Porra, “A low-power HBT MMIC filter based on tunable active inductor,” IEEE Microwave Wireless Compon. Lett., vol. 7, no. 8, pp. 209-211, Aug. 1997.
[40] F. Giannini, E. Limiti, G. Orengo, and P. Sanzi, “High-Q gyrator-based monolithic active tunable bandstpop filter,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 809-812.
[41] Shinji Hara, Tsuneo Tokumitsu, Toshiaki Tanaka, and Masayoshi Aikawa, “Broad-band monolithic microwave active inductor and its applications to miniaturized wind-band amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp. 1920-1924, Dec. 1988.
[42] Shinji Hara, Tsuneo Tokumitsu, and Masayoshi Aikawa, “Lossless broad-band monolithic microwave active inductor,” in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp. 955-958.
[43] Stepan Lucyszyn and Ian D. Robertson, “Monolithic narrow-band filter using ultrahigh-Q tunable active inductor,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2617-2622, Dec. 1994.
[44] Stepan Lucyszyn and Ian D. Robertson, “High performance MMIC narrow band filter using tunable active inductor,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 91-93.
[45] E. M. Bastida, G. P. Donzelli, and L. Scopelliti, “GaAs monolithic microwave integrated circuits using broadband tunable active inductors,” in Proc. 19th European Microwave Conf., Sept. 1989, pp. 1282-1287.
[46] Jin-Su Ko and Kwyro Lee, “Low power tunable active inductor and its applications to monolithic VCO and BPF,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 929-932.
[47] Kang-Wei Fan, Ching-Chih Weng, Zou-Min Tsai, Huei Wang, and Shyh-Kang Jeng, “K-band MMIC active band-pass filter,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 1, pp. 19-21, Jan. 2005.
[48] K. W. Kobayashi, L. T. Tran, D. K. Umemoto, A. K. Oki, and D. C. Streit, “A 6.45 GHz active bandpass filter using HBT negative resistance elements,” in Gallium Arsenide Integrated Circuit (GaAs IC) Symp. Dig., Nov. 1998, pp. 143-146.
[49] Bernd P. Hopf, Ingo Wolff, and Marco Gugiielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 1183-1185.
[50] Bernd P. Hopf, Ingo Wolff, and Marco Gugiielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2598-2602, Dec. 1994.
[51] Yonh-Ho Cho, Song-Cheol Hong, and Young-Se Kwon, “A low-power monolithic GaAs FET bandpass filter based on negative resistance technique,” IEEE Microwave Guided Wave lett., vol. 8, no. 4, pp. 161-163, Apr. 1998.
[52] Ulun Karacaoglu and Ian D. Robertson, “MMIC active bandpass filters using negative resistance elements,” in IEEE Microwave and Millimeter-Wave Monolithic Circuit (MMWMC) Symp. Dig., 1995, pp. 171-174.
[53] Ulun Karacaoglu and Ian D. Robertson, “MMIC active bandpass filters using varactor-tuned negative resistance elements,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2926-2932, Dec. 1995.
[54] M. R. Moazzam, I. D. Robertson, A. H. Aghvami, and Marco Gugiielmi, “S-band monolithic active filter using actively-coupled resonator techniques,” in Proc. 22nd European Microwave Conf., Aug. 1992, pp. 729-734.
[55] Chi-Yang Chang and Tatsuo Itoh, “Microwave active filters based on coupled negative resistance method,” IEEE Trans. Microwave Theory & Tech., vol. 38, no. 12, pp. 1879-1884, Dec. 1990.
[56] Masaharu Ito, Kenichi Maruhashi, Shuya Kishimoto, and Keiichi Ohata, “60-GHz-Band Coplanar MMIC Active Filter,” IEEE Trans. Microwave Theory & Tech., vol. 52, no. 3, pp. 743-750, March 2004.
[57] Ulun Karacaoglu, Ian D. Robertson, and M. Guglielmi, “A dual-mode microstrip ring resonator filter with active devices for loss compensation,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 189-192.
[58] Ulun Karacaoglu, Ian D. Robertson, and M. Guglielmi, “Microstrip bandpass filters using MMIC negative resistance circuits for loss compensation,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 613-616.
[59] R. R. Bonetti, A. E. Williams, T. Duong, R. Gupta, and R. Mott, “An MMIC active filter with 60-dB rejection,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1992, pp. 1195-1198.
[60] Nhat M. Nguyen and Robert G. Meyer, “A Si bipolar monolithic RF bandpass amplifier,” IEEE J. Solid-State Circuits, vol. 27, no. 1, pp. 123-127, Jan. 1992.
[61] Hossein Hashemi and Ali Hajimiri, “Cocurrent multiband low-nose amplifiers-theory, design, and applications” IEEE Trans. Microwave Theory Tech., vol. 50, no. 1, pp. 288-301, Jan. 2002.

[62] Manfred J. Schindler and Yusuke Tajima, “A novel MMIC active filter with lumped and transversal,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 12, pp. 2148-2153, Dec. 1989.
[63] M. Danestig, H. Johansson, A. Ouaha, and S. Rudner, “Low-noise active recursive MMIC filters,” in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, Jun. 1997, pp. 705-708.
[64] H. Ezzedine, M. Delmond, L. Billonnet, B. Jarry, and P. Guillon, “Optimization of noise performance for various topologies of microwave active recursive filters,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1173-1176.
[65] M. Delmond and L. Billonnet, “Microwave tunable active filter design in MMIC technology using recursive concepts,” in IEEE Microwave and Millimeter-Wave Monolithic Circuit (MMWMC) Symp. Dig., 1995, pp. 105-108.
[66] W. Mouzannar, L. Billonnet, B. Jarry, and P. Guillon, “Highly selective novel MMIC microwave active recursive filter,” in IEEE Radio Frequency Integrated Circuit (RFIC) Symp. Dig., 1998, pp. 39-42.
[67] A. Cenac, H. Ezzedine, L. Billonnet, B. Jarry, and P. Guillon, “Low noise and frequency tunable microwave active recursive filters using power summation principles,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 1227-1230.
[68] D. K. Asams and R. Y. C. Ho, “Active filters for UHF and microwave frequencies,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 662-670, Sep. 1969.
[69] C. R. Poole, “The effect of device configuration on GaAs MESFET negative resistance behavior,” in Int. Circuit and System Conf., Shenzhen, China, Jun. 1991, pp. 427-430.
[70] Jae-Ryong Lee, Young-Hoon Chun, and Sang-Won Yun, “A novel bandpass filter using active capacitance,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1747-1750.
[71] Young-Hoon Chun, Jae-Ryong Lee, Sang-Won Yun, and Jin-Koo Rhee, “Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 687-694, Feb. 2005.
[72] Ching-Yuang. Wu and Khun-Nan Lai, “Integrated Lambda differential negative resistance MOSFET device,” IEEE J. Solid-State Circuits, vol. 14, no. 6, pp. 1094-1101, Dec. 1979.
[73] Behzad Razavi, RF Microelectronics. NJ: Prentice-Hall, 1998, pp. 228.

[74] George L. Matthaei, Leo Young, and E.M.T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, MA: Artech House, 1980, ch. 8.
[75] George D. Vendelin, Anthony M. Pavio, and Ulrich L. Rohde, Microwave Circuit Design using Linear and Nonlinear Techniques. New York: Wiley, 1990, pp. 103.
[76] Paul A. Layman, and Savvas G. Chamberlain, “A compact thermal noise model for the investigation of soft error rates in MOS VLSI digital circuits,” IEEE J. Solid-State Circuits, vol. 24, pp. 79-89, Feb. 1989.
[77] Emad Hegazi, Henrik Sjoland, and Asad A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1929, Feb. 2001.
[78] Derek K. Shaeffer and Thomas H. Lee, The Design and Implementation of Low-Power CMOS Radio Receivers. MA: Kluwer Academic Publishers, 1999, pp.52-53.
[79] Behzad Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001, pp. 212-213.
[80] Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design. 2nd ed., NJ: Prentice-Hall, 1997, ch. 4.
[81] Yuhua Cheng and Chenming Hu, Mosfet Modeling & Bsim3 User’s Guide. MA: Kluwer Academic Publishers, 1999, ch. 10.
[82] F. B. Lewellyn, “Some fundamental properties of transmission systems,” Proc. IRE, vol. 40, no. 3, pp. 271-283, Mar. 1952.
[83] J. M. Rollet, “Stability and power gain invariants of linear two ports,” IRE Trans. Circuit Theory, vol. CT-9, no. 3, pp. 29-32, Mar. 1962.
[84] Robert W. Jackson, “Rollet Proviso in the stability of linear microwave circuits-a tutorial,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 993-1000, Mar. 2006.
[85] M. Ohtomo, “Proviso on the unconditional stability criteria for linear two ports,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 5, pp. 1197-1200, Mar. 1995.
[86] Marion Lee Edwards and Jeffery H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
[87] Marion Lee Edwards and Jeffery H. Sinsky, “New simple proofs of the two-port stability criterion in terms of the single stability parameter ��,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1073-1076, Jun. 2001.
[88] K. Kurokawa, An Introduction to the Theory of Microwave Circuits. New York: Academic, 1969.
[89] Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design. 2nd ed., NJ: Prentice Hall, 1997, pp.217-227.
[90] Giancarlo Lombardi and Bruno Neri, “Criteria for the evaluation of unconditional stability of microwave linear two-ports: a critical review and new proof,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 6, pp. 746–751, Jun. 1999.
[91] D. Woods, “Reappraisal of unconditional stability criteria for active 2-port networks in terms of S-parameters,” IEEE Trans. Circuit Syst., vol. CAS-23, no. 2, pp. 281-283, Feb. 1976.
[92] A. Platzker, W. Struble, and K. T. Hetzler, “Instabilities diagnosis and the role of K in microwave circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1993, pp. 1185-1189.
[93] Robert W. Jackson, “Criteria for the onset of oscillation in microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 3, pp. 566-569, Mar. 1992.
[94] Robert W. Jackson, “Comments for the onset of oscillation in microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 9, pp. 1850-1851, Sep. 1992.
[95] C. C. Meng and H. Y. Ni, “Determining stability circle using two geometrically derived parameters,” in Asia-Pacific Microwave Conf., Dec. 2000, pp. 1101-1104.
[96] Frank Ellinger, David Barras, Martin Schmatz, and Heinz Jackel, “A low power DC-7.8 GHz BiCMOS LNA for UWB and optical communication,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 13-16.
[97] David Barras, Frank Ellinger, Heinz Jackel, and Walter Hirt, “A low supply voltage SiGe LNA for ultra-wideband frontends,” IEEE Microwave Wireless Compon. Lett., vol. 14, no. 10, pp. 469-471, Oct. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊