跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗平
研究生(外文):Tsung-Ping Lee
論文名稱:應用RB與CBR建構一個解答擷取系統
論文名稱(外文):Building a Solution-Retrieval System Based on RB and CBR Approaches
指導教授:曾憲雄曾憲雄引用關係
指導教授(外文):Shian-Shyong Tseng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機資訊學院碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:52
中文關鍵詞:解答擷取專家系統Rule BaseCase-Based Reasoning
外文關鍵詞:Solution-RetrievalExpert SystemRule BaseCase-Based Reasoning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
由於網路快速發展,服務多人上線的系統,已從傳統的兩層式 (client-server) 架構轉型成三層式 (client-application server-database)架構,因此,問題的偵測跟解問題的方法,對於這樣的領域來說,其複雜度就不斷增加。就我們所知,很多公司需要花很多人力物力去維護這樣的系統,然而公司的專家不可能一直在公司解問題,既使用文件搜尋來找答案,也可能找不到解答,所以提出根據專家系統的方法,來建構一個解答擷取系統。在本篇論文中,我們提出 Solution-Retrieval System (SRS) 架構來輔助使用者解決問題。在SRS中,結合 Rule Base (RB)跟 Case Based Reasoning (CBR)方法,我們使用RB推論來縮小問題的範圍,用CBR來找問題的解答,這樣處理的方式是模仿專家的處理模式,依著系統的特性,用推論的方式來找出錯誤類型,再將推論出來的錯誤類型,用專家的經驗法則,比較相似度,將相似度高的解決方案應用到問題上去解系統問題。再者,為了提高解問題的及時性,我們的系統也可以在 PDA等小型裝置上及時的運用來解問題。未來,這樣的架構可以應用在相關的領域上,例如: IC 設計,整合供應鍊 等。
Due to the fast development of web services, most of the service activities have been moved from 2 tiers (client-server) to 3 tiers (client-application server-database); hence, the importance of problem diagnosis and solution retrieving in integrated domains becomes more complicated. As we know, many of companies devote lots of time and effect to deal with this problem. However, since experts are not always available, using traditional approach or knowledge management center to search solutions may still fail. Hence, the idea of developing a solution-retrieval system based upon expert system approach is proposed. In the thesis, we propose an architecture based on rule base (RB) and case-based reasoning (CBR) and build a Solution-Retrieval System (SRS) to help users to solve the problems, in which RB is used to reduce error scope and CBR is used to find the corresponding solutions. Similar to the expert’s diagnosis approach, we use the SRS to diagnose the error type by RB inference, and retrieve solutions by CBR. Finally, the retrieved high similarity solution cases can be used to solve problems. Furthermore, the PDA and hand-held devices could be used in our system for solving problem promptly. In the near future, this architecture will be adapted on other related domains, e.g., IC design and Supply Chain.
Abstract (In Chinese) i
Abstract ii
Acknowledgement iii
Content iv
List of Definitions v
List of Examples v
List of Figures vi
Chapter 1. Introduction 1
Chapter 2. Related Work 3
2.1. Problem Diagnosis 3
2.2. Solution Retrieving 6
Chapter 3. The Design of Solution-Retrieval System 8
3.1. Knowledge Representation 8
3.2. The SRS System Architecture 11
Chapter 4. Problem Diagnosis by Rule-Based Inference 15
4.1. Knowledge Acquisition 15
4.2. Embedded Rules 19
Chapter 5. Solution Retrieving by CBR 22
5.1. Case Retain 22
5.2. Case Retrieve 23
Chapter 6. Implementation and Evaluations 32
6.1. Implementation of SRS 33
6.2. Evaluation of SRS 36
Chapter 7. Conclusion and Future Work 41
Bibliography 42
Appendix A: AT of Rule class Daemon home 45
Appendix B: AT of Rule class DB Daemon 48
Appendix C: Oracle database 10g architecture 50
Autobiography 52
[1] Y. I. Chang and W. H. Hsieh, “An efficient scheduling method for query-set-based broadcasting in mobile environments,” Distributed Computing Systems Workshops, 2004. Proceedings. 24th International Conference, Page(s):478 – 483, 2004.

[2] Y. F. Chen, H. Huang, R. Jana, S. John, S. Jora, A. Reibman and B. Wei, “Personalized multimedia services using a mobile service platform,” Wireless Communications and Networking Conference, 2002. WCNC2002. 2002 IEEE, Page(s):918 - 925 vol.2, 17-21 March 2002.

[3] Y. Chen, W. Y. Ma and H. J. Zhang, “Detecting web page structure for adaptive viewing on small form factor devices,” ACM TXN, 2003.

[4] M. Gu, X. Tong and A. Agnar, “Comparing similarity calculation methods in conversational CBR, “Information reuse and integration, Conf, 2005. IRI -2005 IEEE International Conference, Page(s):427 – 432, 15-17 Aug. 2005.

[5] M. J. Hajar and S. P. Lee, PhD, “Applying machine learning using case-based reasoning (CBR) and rule-based reasoning (RBR) approaches to object-oriented application framework documentation,” Information Technology and Applications, 2005. ICITA 2005. Third International Conference Volume 1, Page(s):52 - 57 vol.1, 4-7 July 2005.

[6] S. Hayashi, T. Asakura and S. Zhang, “Study of machine fault diagnosis system using neural networks,” Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on Volume 1, Page(s):956 – 961, 12-17 May 2002.

[7] X. Hou, J. Gu, X. Shen and W. Yan, “Application of data mining in fault diagnosis based on ontology”, Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05), 2005.


[8] S. Krishnaswamy, S. W. Loke and A. Zaslasvky “A hybrid model for improving response time in distributed data mining,” Systems, Man and Cybernetics, Part B, IEEE Transactions Volume 34, Issue 6, Page(s):2466 – 2479, Dec. 2004.

[9] F. R. Kumar, S. Gopalan and V. Sridhar, “Context enabled Multi-CBR based Recommendation Engine for E-commerce,” e-Business Engineering, 2005. ICEBE 2005. IEEE International Conference, Page(s):237 – 244, 12-18 Oct. 2005.

[10] G. Lambert-Torres, H. G. Martins, R. Rossi and L. E. B. da Silva, “Using similarity assessment in case-based reasoning to solve power system substation problems,” Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference
Volume 1, Page(s):343 - 346 vol.1, 4-7 May 2003.

[11] T. Lemlouma and N. Layaida, “Adapted content delivery for different contexts,” Applications and the Internet, 2003. Proceedings. 2003 Symposium, Page(s):190 - 197, 27-31 Jan. 2003.

[12] W. Y. Lum and F. C. M. Lau, “User-centric adaptation of structured Web documents for small devices,” Advanced Information Networking and Applications, 2005. AINA 2005. 19th International Conference, Volume 1, Page(s):507 - 512 vol.1, 28-30 March 2005.

[13] W. C. Peng and M. S. Chen, “Developing data allocation schemes by incremental mining of user moving patterns in a mobile computing system,” IEEE Transactions on Knowledge and Data Engineering, Volume 15, Issue 1, Page(s):70 – 85, Jan.-Feb. 2003.

[14] I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik and K. Hernandez, “Adaptive diagnosis in distributed systems ,” IEEE Transactions on neural networkds, VOL. 16, NO. 5, SEPTEMBER 2005.


[15] Y. L. Wai and F. C. M. Lau, ” User-centric content negotiation for effective adaptation service in mobile computing,” IEEE Transactions on Software Engineering, Page(s):1100 – 1111, Volume 29, Issue 12, Dec. 2003.

[16] D. Zhang, S. Dai, Y. Zheng, R. Zhang and P. Mu, “Researches and application of a hybrid fault diagnosis expert system,” Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on Volume 1, Page(s):215 - 219 vol.1, 28 June-2 July 2000.

[17] Oracle Admin, “Oracle9i Application Server Architecture and Components,” http://www.huihoo.com/oracle/application_server/9i.html.

[18] Oracle Admin, “Oracle to answer Regis MSCD 640 Oracle Admin on Windows 2000 Vocabulary Assignment Answers,” http://www.wilsonmar.com/1oraarch.htm.

[19] Oracle, OTN, http://www.oracle.com/technology/software/products/ias/index.html.

[20] Oracle, OTN, http://www.oracle.com/technology/software/products/database/oracle10g/index.html.

[21] Oracle, OTN, http://www.oracle.com/technology/software/products/jdev/index.html.

[22] 曾憲雄等, 人工智慧與專家系統─理論、實務、應用 ,2005, 旗標。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊