跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃和悅
研究生(外文):Her-Yueh Huang
論文名稱:不�袗�TIG-Flux銲接技術之研究
論文名稱(外文):A Study on the TIG-Flux Processing Technology of Stainless Steel
指導教授:周長彬周長彬引用關係
指導教授(外文):Chang-Pin Chou
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:121
中文關鍵詞:活性助銲劑不�袗�熱裂敏感性角變形銲道型態
外文關鍵詞:Activating fluxStainless steelHot cracking susceptibilityAngular distortionWelds morphology
相關次數:
  • 被引用被引用:2
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要在探討活性助銲劑對沃斯田鐵不�袗�銲道特性之影響。實驗材料選用AISI 304沃斯田鐵型不�袗�,活性助銲劑選用氧化物、氟化物、硫化物與碳酸鹽基等粉末,銲接方法採用不加填料金屬的氬氣保護鎢極電弧銲來進行Bead-on-plate實驗,銲接過程中利用影像擷取系統,並採訊號同步接收方式來拍攝銲接電弧動態影像與紀錄電弧電壓變化。以金相實驗來觀察銲道形態與微觀組織;以肥粒相測定儀來量測銲道殘留肥粒相含量;利用微硬度測定機與拉伸試驗機來瞭解銲道機械性質;以EDS來分析銲道合金元素成份之變化;以Spot-Varestraint test來評估熱裂敏感性;以平均垂直位移法來量測銲件角變形。實驗結果顯示添加氧化物所組成之活性助銲劑將可有效提高銲接金屬熔融效率與銲接熱源能量密度,而得到窄而深的銲道截面與較小的銲接熱影響區,亦可有效降低銲件變形。然有效提高銲道穿深能力是由電漿電弧收縮及熔融銲池緊縮現象為其主要作用機制。此外,TIG-Flux銲接製程將會使銲接金屬在銲後會殘留有較多的肥粒相含量,可有效降低金屬熱裂敏感性的效果;然而其銲道機械性質雖略比傳統佳,但差異不大。評估自行研發出之80%MnO2-20%ZnO為不�袗�TIG-Flux活性助銲添加劑後,在實際工程應用上應可大幅提高生產效率與降低生產成本。
This study aims to investigate the effect of activating flux on the characteristics in austenitic stainless steel welds. Autogenous TIG welding process through a layer of the flux was applied on the AISI 304 stainless steels to produce a bead-on-plate welded joint. Oxide, fluoride, sulfide and carbonate powders were used as the activating fluxes. During welding, a CCD camera system was used to observe and record images of the arc profiles and voltage data. The microstructure and morphology of the welds obtained were examined by means of an optical microscope. The retained ferrite content of welds was measured by using the Ferritscope. Transverse tensile and Vickers hardness test were used to determined for the mechanical properties of weldments. EDS were employed for studying the elemental analysis of the welds. The hot cracking susceptibility was evaluated by the Spot-Varestraint test. The mean vertical displacement method was utilized for calculating the welding angular distortion. The experimental results indicate that higher penetration depth and narrower HAZ range are characteristics of the increased energy density of the welding heat source, and therefore the angular distortion of austenitic stainless steel weldments can be reduced, while working with certain oxide flux. Physically constricting the plasma column and reducing the anode spot are the possible mechanisms for the main contribution to the augmented weld penetration capability. TIG-Flux welding process can increase the measured ferrite number in welds, and tends to reduce hot cracking susceptibility in as welded structures. The welds with activating flux exhibit equal or better mechanical properties than conventional TIG welds deposited without using the flux. Of the different additives considered, the 80%MnO2-20%ZnO mixture can bring about large benefits in terms of productivity, cost and achieve practical use.
中文摘要..........................I
英文摘要..........................II
誌 謝..........................III
目 錄.........................IV
表 目 錄.........................VIII
圖 目 錄.......................... IX

第一章 緒論........................1
1.1研究背景與動機....................1
1.2研究目的.......................3
1.3研究方法.......................3
第二章 文獻回顧......................5
2.1銲接電弧.......................5
2.1.1銲接電弧之簡介..................6
2.1.2銲接電弧之結構..................6
2.1.3銲接電弧之溫度..................7
2.1.4電壓-電流之靜特性................8
2.2沃斯田鐵不�袗�....................9
2.2.1沃斯田鐵不�袗�之簡介...............9
2.2.2沃斯田鐵不�袗�之凝固過程.............10
2.2.3肥粒相組織對沃斯田鐵不�袗�之影響.........14
2.2.4不�袗�中肥粒相含量之計算.............15
2.2.5母材熱影響區與機械性質之關係...........17
2.2.6沃斯田鐵不�袗�之銲接性..............19
2.3助銲劑........................20
2.3.1助銲劑之功用...................20
2.3.2助銲劑之種類...................21
2.3.3助銲劑中之成份對銲接金屬之影響..........23
2.4 銲道熔透深度變異之原因...............31
2.4.1表面張力影響熔融區流體流動之機構.........31
2.4.2電弧效應.....................32
2.4.3微量元素對銲接性之影響..............33
2.5銲接變形.......................35
2.5.1銲接變形之形式..................35
2.5.2銲接變形之形成..................37
2.5.3熱輸入量對銲件角變形之影響............37
2.5.4束縛度對銲件角變形之影響.............39
2.5.5相變化對銲件角變形之影響.............40
2.5.6預熱處理對銲件角變形之影響............41
2.6氣體鎢極電弧銲....................42
2.6.1氣體鎢極電弧銲之原理...............42
2.6.2銲接電流的性質..................44
2.6.3鎢棒的種類....................46
2.6.4保護氣體.....................48
2.7銲接熱裂.......................52
2.7.1銲接熱裂之形成理論................52
2.7.2熱影響區熱裂之理論................54
2.7.3銲接熱裂之裂縫形成與發生位置...........55
第三章 實驗方法與步驟...................57
3.1 實驗流程......................57
3.2 實驗試片準備....................58
3.3 活性助銲劑選擇與塗敷................59
3.4 銲接參數設定....................59
3.5 角變形量測.....................63
3.6 電弧形態與電弧電壓變化拍攝.............63
3.7 金相實驗......................66
3.8 銲道深寬比量測...................66
3.9 肥粒相含量量測...................66
3.10 微硬度試驗.....................67
3.11 拉伸試驗......................68
3.12 熱裂試驗......................68
3.13 SEM與EDS分析..................70
第四章 結果與討論.....................71
4.1 活性助銲劑添加對銲道外觀之影響...........71
4.2 活性助銲劑添加對銲道形態之影響...........73
4.3 活性助銲劑添加對銲道穿深能力之增加機制.....78
4.4 活性助銲劑添加對於銲件角變形之影響.........84
4.5 活性助銲劑添加對銲道肥粒相之影響..........87
4.6 弧長對活性化銲接製程中銲道型態之影響......89
4.7 活性助銲劑添加對銲道機械性質之影響.........93
4.8 活性助銲劑添加對熱裂敏感性之影響..........94
4.9 混合型活性助銲劑對銲道特性之影響..........97
4.10 TIG-Flux銲接製程技術評估.............100
4.10.1 提高熔透深度之機制..............101
4.10.2 銲道殘留肥粒相................101
4.10.3 銲件變形...................104
4.10.4 熱裂敏感性..................104
4.10.5 銲道機械性質.................106
4.10.6 EDS成份分析.................107
4.11 TIG-Flux銲接製程之應用...............108
第五章 結論........................111
參考文獻.........................113
附錄一..........................121
學術著作.........................122



表 目 錄
頁次
表2-1 按主要成份特性對銲劑分類..............24
表2-2 按MnO含量對銲劑的分類...............27
表2-3 TIG電流類型之特性.................45
表2-4 鎢電極與適用電流之關係...............46
表2-5 特殊鎢電極銲接電流熔斷之極限值...........47
表2-6 銲接氣體的比重...................48
表2-7 銲接氣體的解離電壓值................50
表3-1 母材之合金元素成份表(wt-%).............58
表3-2 母材之常溫物理性質與機械性質............58
表3-3 各種助銲劑之初步實驗結果..............61
表3-4 銲接參數之設定值..................62
表4-1 活性助銲劑之混合比對電弧電壓之變化.........103
表4-2 TIG-Flux銲接製程之機械性質測試結果.........106
表4-3 TIG-Flux銲接製程之EDS成份分析結果.........107



圖 目 錄
頁次
圖2-1 電弧形成之示意圖..................5
圖2-2 氬銲電弧結構與電壓降之關係圖............6
圖2-3 氬銲電弧溫度之分佈圖................8
圖2-4 電壓-電流之靜特性曲線...............9
圖2-5 Fe-Cr-Ni之虛擬二元相圖...............11
圖2-6 沃斯田鐵不�袗�之固化模式..............13
圖2-7 Schaeffer Diagram..................16
圖2-8 Delong Diagram...................16
圖2-9 WRC-l992 Constitution Diagram............17
圖2-10 金屬母材銲後不同區域之微觀組織...........18
圖2-11 熔融區附近金屬的組織及性質.............19
圖2-12 銲池中驅動流體流動之力量..............33
圖2-13 銲接變形之基本形式.................36
圖2-14 對接銲角變形之形成示意圖..............37
圖2-15 熱輸入量對銲件角變形之影響.............38
圖2-16 銲道熔透深度╱母材厚度與銲件角變形之關係圖.....39
圖2-17 束縛度對銲件角變形之影響..............40
圖2-18 相變化對銲件角變形之影響..............41
圖2-19 預熱處理對銲件角變形之影響.............42
圖2-20 惰性氣體鎢極電弧銲之示意圖.............43
圖2-21 惰性氣體鎢極電弧銲之系統圖.............43
圖2-22 銲接氣體的熱傳導性.................49
圖2-23 銲接氣體對銲道截面形狀之影響............52
圖2-24 銲接金屬熱裂之綜合理論示意圖............54
圖2-25 銲接熱裂之裂縫形式與發生位置............55
圖2-26 延晶式破裂示意圖..................56
圖3-1 實驗流程圖.....................57
圖3-2 活性助銲劑塗敷示意圖................60
圖3-3 TIG Flux 銲接示意圖................62
圖3-4 銲件變形量測示意圖.................64
圖3-5 銲件角變形量測設備.................65
圖3-6 銲接實驗設備與影像擷取系統示意圖..........65
圖3-7 銲道形狀量測示意圖.................67
圖3-8 拉伸試片規格圖...................68
圖3-9 Spot-Varestraint 試驗示意圖.............69
圖3-10 完成Spot-Varestraint試驗之試片示意圖........70
圖4-1 活性助銲劑對不�袗�銲道外觀之影響..........72
圖4-2 活性化銲接製程參數對銲道熔透面積之影響.......74
圖4-3 活性化銲接製程參數對銲道深寬比之影響........74
圖4-4 活性化銲接製程參數對銲接熱影響區之影響.......75
圖4-5 活性化銲接製程參數對銲冠高度之影響.........75
圖4-6 活性化銲接製程參數對不�袗�銲道形態之影響......76
圖4-7 活性助銲添加劑對銲道截面形狀之影響.........77
圖4-8 銲道熔深與熔融液態金屬流動之關係圖.........79
圖4-9 電漿電弧柱收縮示意圖................80
圖4-10 活性助銲劑對電漿電弧與熔融銲池之影響........81
圖4-11 活性化銲接製程對銲道成形之示意圖..........82
圖4-12 Al2O3活性助銲劑之特性...............83
圖4-13 TIG-Flux銲接製程參數對銲件角變形之影響......86
圖4-14 當銲道熔深超過母材厚度一半之銲件角變形形成示意圖..86
圖4-15 當銲道熔深未超過母材厚度一半之銲件角變形形成示意圖.87
圖4-16 活性化銲接製程參數對銲道肥粒相之影響........88
圖4-17 活性化銲接製程參數對電弧電壓之影響.........89
圖4-18 弧長對不�袗�銲道形態之影響.............90
圖4-19 弧長對電漿電弧與陽極斑點之影響...........91
圖4-20 弧長對電弧電壓與銲道熔透深度之影響.........92
圖4-21 活性化銲接製程中電弧拖曳現象............93
圖4-22 活性助銲劑添加對不�袗�機械性質之影響........94
圖4-23 銲道金屬熔融區與熱影響區中所測得的裂縫總長度之比較.95
圖4-24 活性助銲劑添加對熱裂敏感性之影響..........96
圖4-25 TIG-Flux銲接製程對不�袗�銲道外觀之影響......98
圖4-26 TIG-Flux銲接製程對不�袗�銲道形態之影響......99
圖4-27 活性助銲劑混合比例對銲道特性之影響.........100
圖4-28 TIG-Flux銲接製程對電漿電弧與熔融銲池之影響....101
圖4-29 TIG-Flux銲接製程對電弧電壓之影響.........102
圖4-30 TIG-Flux銲接製程對銲道殘留肥粒相之影響......103
圖4-31 TIG-Flux銲接製程對不�袗�銲道微觀組織之影響....104
圖4-32 銲道熔深╱母材厚度對銲件角變形之影響........105
圖4-33 TIG-Flux銲接製程對熱裂敏感性之影響........105
圖4-34 拉伸試片破斷面之SEM觀察.............106
圖4-35 TIG-Flux銲接製程之EDS光譜分析結果........108
圖4-36 傳統氬銲與TIG-Flux銲接製程之比較.........109
圖4-37 TIG-Flux銲接製程之應用實例............110
1. W. Lucas and D. Howse: “Activating flux - increasing the performance and productivity of the TIG and plasma processes”, Weld. Met. Fabr., 1996, 64 (1), 11-17.
2. D. Howse and W. Lucas: “Investigation into arc constriction by active fluxes for tungsten inert gas welding”, Sci. Technol. Weld. Joining, 2000, 5(3), 189-193.
3. S.M. Gurevich and V.M. Zamkov: “Welding titanium with a nonconsumable electrode using fluxes “, Avt. Svarka, 1966, 12, 13-16.
4. Troy D. Paskell , “Gas tungsten arc welding flux”, United State Patent 5804792, Sep. 8, 1998.
5. T. Paskell, C. Lundin, and H. Castner: “GTAW flux increases weld joint penetration”, Weld. J., 1997, 76(4), 57-62.
6. Paulo J. Modenesi, Eustáquio R. Apolinário, Iaci M. Pereira: “TIG welding with single-component flux”, J. Mater. Process. Technol., 2000, 99, 260-265.
7. P.C.J. Anderson and R. Wiktorowicz: “Improving productivity with A-TIG welding”, Weld. Met. Fabr., 1996, 64(3), 108-109.
8. W. Middel and G. den Ouden: “Additive assisted through the arc sensing during gas tungsten arc welding”, Sci. Technol. Weld. Joining, 1999, 4(6), 335-339.
9. M. Kuo, Z. Sun, and D. Pan: “Laser welding with activating flux”, Sci. Technol Weld. Joining., 2001, 6(1), 17-22.
10. N. Ames, M. Ramberg, M. Johnson and T. Johns , “Comparison of austenitic, super austenitic and super duplex weld properties produced using GTAW flux”, Stainless steel world 2001 KCI publishing BV, 1-10.
11. C.L. Yang, S.B. Lin, F.Y. Liu, W. Lin and Q.T. Zhang: “Research on the mechanism of penetration increase by flux in A-TIG welding”, J. Mater. Sci. Technol., 2003, 19, 225-227.
12. Stéphane Sire and Surendar Marya: “On the selective silica application to improve welding performance of the tungsten arc process for a plain carbon steel and for aluminium”, C.R. Mecanique, 2002, 330, 83-89.
13. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshi-ishi, and C. L. Yang: “Effects of activating flux on arc phenomena in gas tungsten arc welding”, Sci. Technol Weld. Joining., 2000, 5(6), 397-402.
14. 姜煥中,“電弧焊及電渣焊”,機械工業出版社,1988。
15. 錢在中,“焊接技術手冊”,山西科學技術出版社,1999。
16. H.B.Cary, “Modern Welding Technology”, Prentice Hall, 1998.
17. 周長彬、蔡丕樁、郭央諶,“銲接學”,全華科技圖書股份有限公司,1997。
18. K.H. Tseng: “The study on the distortion and residual stress in stainless steel weldments”, Ph.D. thesis, National Chiao Tung University, 2001.
19. J.M. Vitek and S.A. David: “The effect of cooling rate on ferrite in type 308 stainless steel weld metal”, Weld. J., 1988, 67(4), 95-102.
20. C.D. Lundin and C.P. Chou: “Hot cracking of austenitic stainless steels weld metals”, Weld. Res. Counc. Bull., 1983, 289, 1-80.
21. N. Suutala, T. Takalo, and T. Moisio: “The relationship between solidification and microstructure in austenitic-ferritic stainless steel welds”, Metall. Trans., 1979, 10A(4), 512-514.
22. N. Suutala, T. Takalo, and T. Moisio: “Austenitic solidification mode in austenitic stainless steel welds”, Metall. Trans., 1979, 10A(8), 1173-1181.
23. N. Suutala, T. Takalo, and T. Moisio: “Single-phase ferrite solidification mode in austenitic-ferrite stainless steel welds”, Metall. Trans., 1979, 10A(8), 1183-1190.
24 N. Suutala, T. Takalo, and T. Moisio: “Ferritic-austenitic solidification mode in austenitic stainless steel welds”, Metall. Trans., 1980, 11A(5), 717-725.
25 N. Suutala: “Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds”, Metall. Trans., 1982, 13A(l2), 2121-2130.
26. N. Suutala: “Effect of solidification conditions on the solidification mode in austenitic stainless steels”, Metall. Trans., 1983, 14A(2), 191-197.
27. J.A. Brooks, J.C. Williams, and A.W. Thompson: “STEM analysis of primary austenite solidified stainless steel welds”, Metall. Trans., 1983, 14A(1), 23-31.
28. J.A. Brooks, J.C. Williams, and A.W. Thompson: “Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds”, Metall. Trans., 1983, 14A(7), 1271-1281.
29. S. Katayama, T. Fujimoto, and A. Matsunawa: “Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals”, Trans. JWRI, 14(1), 1985, 123-137.
30. J.C. Lippoid and W.F. Savage: “Solidification of austenitic stainless steel weldments: Part 2- The effect of alloy composition on ferrite morphology”, Weld. J., 1980, 59(2), 48-58.
31. F.C. Hull: “Effect of delta ferrite on the hot cracking of stainless steel”, Weld. J., 1967, 46(9), 399-409.
32. J.C. Boland: “Suggested explanation of hot cracking in mild low steel weld”, Weld. J., 1982, 61(5), 139-148。
33. J.A. Brooks, A.W. Thompson and J.C. Willians: “A fundamental study of the beneficial effect of delta ferrite in reducing weld cracking”, Weld. J., 1984, 63(4), 71-83.
34. F.C. Hill: “Effect of delta ferrite on hot cracking of stainless steel”, Weld.J., 1973, 52(5), 193-203.
35. Y. Arata, F. Matsuda, and S. Katayama: “Solidification crack susceptibility in weld metals of fully austenitic stainless steels”, Trans. JWRI, 1976, 5(2), 35-51.
36. D.L. Olson: “Prediction of austenitic weld metal microstructure and properties”, Weld. J., 1985, 64(10), 281-295.
37. D.J. Kotecki and T.A. Siewert: “WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram”, Weld. J., 1992, 71(5), 171-178.
38. Erich Folkhard: “Welding metallurgy of stainless steels”, Springer-Verlag, 1988.
39. I.J. Polmear: “Metallurgy of the Light Metals” , Edward Arnold, 1981.
40. Taylor Lyman: “Metals handbook - Altas of microstructures of industrial alloys”, Vol. 7, Metals park, 1972.
41. Kou Sindo: “Welding metallurgy”, Wiley, 1987.
42. 周漢標、廖德潭、洪文山,“沃斯田鐵不�袗�之銲接性及熱裂分析(上)”,機械月刊,1992,18(2),155-171。
43. 伊士科,“世界焊接材料手冊”,中國標準出版社,1996。
44. 李亞江、楊虎重、任樹全,“焊接材料選用指南”,中國建材工業出版社,1996。
45. 伊士科、朱明生、王移山、董連仁,“國內外焊條簡明手冊”,兵器工業出版社,1991。
46. K.P. Ferrera and D.L. Olson: “Performance of the MnO-SiO2-CaO system as a flux”, Weld. J., 1975, 54(7), 221.
47. J.H. Palm: “How fluxes determine the metallurgical properties of submerged arc welds”, Weld. J., 1972, 51(7), 358.
48. W.T. DeLong, G.A. Ostrom and E.R. Szumachowsk: “Measurement and calculation of ferrite in stainless-steel weld metal”, Weld. J., 1956, 34(11), 521.
49. J.F. Lancaster, “Metallurgy of Welding”, George Allen & Unwin, 1980.
50. G.W. Oyler, R.A. Matsuzesk and C.R. Garr: “Why some heats of stainless steel may not weld”, Weld. J., 1967, 46(12), 1006.
51. K.C. Mills and B.J. Keene: “Factors affecting variable weld penetration”, Int. Mater. Rev. 1990, 35(4), 185-216.
52. J.A. Lambert: “Cast-to-cast variability in stainless steel mechanized GTA welds”, Weld. J., 1991, 70(5), 41-52.
53. S.K. Marya, “Effect of minor chemistry elements on GTA weld fusion zone characteristics of a commercial grade titanium”, Scripta Materialia, 1996 , 34(11), 1741-1745.
54. C.R. Heiple and J.R. Roper: “Effect of selenium on GTAW fusion zone geometry”, Weld. J., 1981, 60(8), 143-145.
55. C.R. Heiple and J.R. Roper: “Mechanism for minor element effect on GTA fusion zone geometry”, Weld. J., 1982, 61(4), 97-102.
56. C.R. Heiple, J.R. Roper, R.T. Stagner, and R.J. Aden: “Surface active element effects on the shape of GTA, laser, and electron beam welds”, Weld. J., 1983, 62(3), 72-77.
57. C.R. Heiple and P. Burgardt: “Effect of SO2 shielding gas additions on GTA weld shape”, Weld. J., 1985, 64(6), 159-162.
58. P. Burgardt and C.R. Heiple: “Interaction between impurities and welding variables in determining GTA weld shape”, Weld. J., 1986, 65(6), 150-155.
59. Y. Takeuchi, R. Takagi and T. Shinoda: “Effect of bismuth on weld joint penetration in austenitic stainless steel”, Weld. J., 1992, 71(8), 283-289.
60. A.G. Simonik , “The effect of contraction of the arc discharge upon the introduction of electronegative elements”, Avt. Svarka, 1976, 3, 49-51.
61. M.M. Savitskii , B. N. Kushnirenko and A. F. Lupan: “Special features of the formation of welds made with activating fluxes”, Avt. Svarka, 1981, 2, 18-21.
62. O.E. Ostroviski, “The effect of activating fluxes on the penetration capability of the welding arc and energy concentration in the anode spot”, Svar. Proiz, 1977, 3, 3-4.
63. Y. Wang, Q. Shi and H. L. Tsai: “Modeling of the effects of surface active elements on flow patterns and weld penetration”, Metall. Mater. Trans. B, 2001, 32(1), 145-161.
64. R.I. Hsieh, Y.T. Pan and H.Y. Liou: “The effect of minor elements and shielding gas on the penetration of the TIG welds of 304 stainless steels”, C.J.M.S., 1998, 30(4), 283-291.
65. W.S. Bennett and G.S. Mills: “Weldability studies on high manganese stainless steel”, Weld. J., 1974, 53(12), 548.
66. K. Masubuchi, “Analysis of weld structures”, Pergamon Press, 1980.
67. 蔡宗亮,“銲接應力與變形”,銲接工程技術研習會論文集,1985。
68. R.H. Leggatt and J.D. White: in Proc. Conf., “Residual stresses in welded construction and their effects”, The Welding Institute, 1977, 119-132.
69. V.I. Makhenko, V.M. Shekera, and Y.A. Skosnyagin: “Angular strains in plates heated during welding”, Avt. Svarka, 1972, 7, 25-28.
70. K. Satoh and M. Watanabe: “Effect of welding conditions on the shrinkage distortion in welded structures”, Weld. J., 1961, 40(8), 377-384.
71. T.L. Teng and C.C. Lin: “The effects of welding conditions on residual stresses due to butt welds”, Int. J. Pres. Ves & Piping, 1998, 75, 857-864﹒
72. A.S. Tabatchnikov and A.V. Prtakhin: “Residual displacement in multipass welding with wires of different structural grades”, Svar. Proiz., 1989, 5, 39-41.
73. 村田、田村、加藤、白松,“相轉換溫度對熔接角變形之影響”,日本溶接學會論文集,1993,11(1),25-31。
74. M. Watanabe, K. Satoh, H. Morri, and I. Ichikawa: “Distortion in web plate of welded built-up girders due to welding of stiffeners and methods for decreasing it”, J. Japan Weld. Soc., 26, 1957, 591-596.
75. H. Kihara, M. Watanabe, K. Masubuchi, and K. Satoh: “Researches on welding stress and shrinkage distortion in Japan”, 60th Anniversary Series of the Society of Naval Architects of Japan, 4, 1959.
76. “Welding handbook”, Vol. 1, American Welding Society, 1987.
77. Larry F. Jeffus: “Welding : principles and applications”, Delmar Publishers, 1992.
78. 王振欽,“銲接學”,高立圖書股份有限公司,1997。
79. 卓照明、簡宏焯、董中能,“混合氣於MIG/MAG銲接之應用技術”,中華民國第一屆銲接學術研討會論文集,1987,159-172。
80. M.J. Cieslak and W.F. Savage: “Hot-cracking studies of alloy CN-7M”, Weld. J., 1985, 64(5), 113-118.
81. W.R. Apblett and W.S. Pellini: “Factors which influence weld hot cracking”, Weld. J., 1954, 13(2), 83.
82. J.C. Borland and R.N. Younger, “Some aspects of cracking in welded Cr-Ni austenitic steels”, British Welding J., 1960, 7(1), 22-59.
83. J.C. Borland: “Generalized theory of super-solidus cracking in welds (and casting)”, British Welding J., 1960, 7(8), 508-512.
84. Philip D. Harvey: “Metallurgy of welding stainless steels”, Metals Engineering Institute, 1978.
85. D.M. Haddrill and C. Humphries: “Stainless steels”, British Welding Research Association, 1965。
86. 林后堯、鄭慶民、周長彬,“多功能可調應變試驗機之開發及其應用研究”,中華民國銲接協會91年度銲接論文發表會論文集,2002,A8-A13。
87. T. Ogawa and E. Tsunetomi: “Hot cracking susceptibility of austenitic stainless steel”, Weld. J., 1982, 61(3), 82-93.
88. J. A. Brook: “Effect of alloy modifications on HAZ cracking of A-286 stainless steel”, Weld. J., 1974, 53(11), 517-523.
89. P.W. Turner and C.D. Lundin: “Effect of the hot cracking of uranium weld metal- Part I”, Weld. J., 1970, 49(12), 579-587.
90. K.H. Tseng and C.P. Chou: “The effect of pulsed GTA welding on the residual stress of a stainless steel weldment”, J. Mater. Process. Technol., 2002, 123, 346-353.
91. K.H. Tseng and C.P. Chou: “Effect of pulsed gas tungsten arc welding on angular distortion in austenitic stainless steel weldments”, Sci. Technol. Weld. Joining, 2001, 6(3), 149-153.
92. B. Pollard: “The effects of minor elements on the welding characteristics of stainless steel”, Weld. J., 1988, 67(9), 202-213.
93. A.A. Shirali and K.C. Mills: “The effect of welding parameters on penetration in GTA welds”, Weld. J., 1993, 72(7), 347-353.
94. V.I. Pavlovsky and K. Masubuchi: “Research in the U.S.S.R. on residual stresses and distortion in welded structures”, Weld. Res. Counc. Bull., 1994, 388, 44-48.
95. K.H. Tseng and C.P. Chou: “The study of nitrogen in argon gas on the angular distortion of austenitic stainless steel weldments”, J. Mater. Process. Technol., 2003, 142, 139-144.
96. K.H. Tseng and C.P. Chou: “Effect of nitrogen addition to shielding gas on residual stress of stainless steel weldments”, Sci. Technol. Weld. Joining, 2002, 7(1), 57-62.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top